Типы моделей описания баз данных. К средствам обеспечения целостности данных на уровне субд относятся

Известны три типа моделей описания баз данных (рис.3.7):

ü иерархическая;

ü сетевая;

ü реляционная.

Основное различие между ними состоит в характере описания взаимосвязей и взаимодействия между объектами и атрибутами базы данных.

Рис 3.7. Основные типы моделей данных

1. Иерархическую модель БД изображают в виде дерева. Каждой вершине соответствует множество экземпляров записей, составляющих логический файл. Вершины расположены по уровням и связаны между собой отношениями подчиненностями. Одна-единственная вершина верхнего уровня является корневой (рис.3.8).

Достоинством модели является:

· простота ее построения;

· легкость понимания сути принципа иерархии;

· наличие промышленных СУБД, поддерживающих данную модель.

Недостатком является сложность операций по включению в иерархию информации о новых объектах базы данных и удалению устаревшей информации.

Рис. 3.8. Иерархическая модель данных

2. Сетевая модель описывает элементарные данные и отношения между ними в виде ориентированной сети. Это такие отношения между объектами, когда каждый порожденный элемент имеет более одного исходного и может быть связан с любым другим элементом структуры рис.3.9).

Сетевые структуры могут быть многоуровневыми, иметь разную степень сложности.

База данных, описываемая сетевой моделью, состоит из областей (области - из записей, а записи - из полей).

Недостатком сетевой модели является ее сложность, возможность потери независимости данных при реорганизации базы данных. При появлении новых пользователей, новых приложений и новых видов запросов происходит рост базы данных, что может привести к нарушению логического представления данных.

Рис.3.9. Сетевая модель данных

3. Реляционная модель БД представляет объекты и взаимосвязи между ними в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами. На этой модели базируются практически все современные СУБД.

Реляционная модель имеет в своей основе понятие «отношения», и ее данные формируются в виде таблиц. Отношение - это двумерная таблица, имеющая свое название, в которой минимальным объектом действий, сохраняющим ее структуру, является строка таблицы (кортеж), состоящая из ячеек таблицы - полей.



Каждый столбец таблицы соответствует только одному компоненту этого отношения. С логической точки зрения реляционная база данных представляется множеством двумерных таблиц различного предметного наполнения.

В реляционной базе данных СУБД поддерживает извлечение информации из БД на основе логических связей. При работе с БД не надо программировать связи с файлами, что позволяет одной командой обрабатывать все файлы данных и повышать эффективность программирования БД. Благодаря снижению требований к квалификации разработчиков существенно расширяется круг пользователей баз данных, информационные базы данных стали стандартом СУБД для информационных систем.

Рис.3.10 Реляционная модель данных

В зависимости от содержания отношения реляционные базы данных бывают:

ü объектными, в которых хранятся данные о каком-либо одном объекте, экземпляре сущности. В них один из атрибутов однозначно определяет объект и называется ключом отношения, или первичным атрибутом. Остальные атрибуты функционально зависят от этого ключа;

ü связными, в которых хранятся ключи нескольких объектных отношений, по которым между ними устанавливаются связи.



Достоинства реляционной модели:

· простота построения;

· доступность понимания;

· возможность эксплуатации базы данных без знания методов и способов ее построения;

· независимость данных;

· гибкость структуры и др.

Недостатки реляционной модели:

· низкая производительность по сравнению с иерархической и сетевой моделями;

· сложность программного обеспечения;

· избыточность элементов.

В последние годы все большее признание и развитие получают объектно-ориентированные базы данных (ООБД).

Принципиальное отличие реляционных и объектно-ориентированных баз данных заключается в следующем : в ООБД модель данных более близка сущностям реального мира, объекты можно сохранить и использовать непосредственно, не раскладывая их по таблицам, типы данных определяются разработчиком и не ограничены набором предопределенных типов.

Традиционными областями применения объектных СУБД являются системы автоматизированного проектирования (САПР), моделирование, мультимедиа.

К объектным СУБД можно отнести СУБД ONTOS - одного из лидеров направляя ООБД, Jasmine. ODB-Jupiter - первый российский продукт такого рода, ORACLE 8.0.

Базы знаний - это специальные компьютерные системы, основанные на обобщении, анализе и оценке знаний высококвалифицированных специалистов-экспертов.

Например, «КонсультантПлюс», «Гарант Сервис».

Основными элементами информационной технологии, используемой в БЗ являются:

Интерфейс пользователя,

База знаний,

Интерпретатор,

Модуль создания системы,

Интерфейс используется для ввода запросов и команд в экспертную систему и получает выходную информацию из нее.

Выходная информация включает не только само решение, но необходимые объяснения, которые могут быть двух видов:

1) по запросам, т.е. те, которые пользователь может получить в любой момент;

2) которые пользователь получает уже при выдаче решения, т.е. то, каким образом получается решение (например, каким образом влияет на прибыль и издержки выбранная цена и т.д.).

К базе знаний относятся факты, характеризующие проблемную область, а также их логическая взаимосвязь. Центральным звеном здесь являются правила, которые даже в простейшей задаче экспертных систем могут насчитывать тысячи. Правила определяют порядок действий в конкретной ситуации при выполнении того или другого условия.

Интерпретатор в определенном порядке проводит обработку знаний, находящихся в базе. Используются также и дополнительные блоки: база данных, блоки расчета, ввода, корректировки данных.

Модуль создания системы служит для создания набора правил, внесения в них изменений. Здесь могут использоваться как специальные алгоритмические языки (ЛИСП, Пролог), так и оболочки экспертных систем.

Более совершенным считается использование оболочек экспертных систем, т.е. программных средств, ориентированных на решение определенной проблемы путем создания соответствующей ей базы знаний. Этот путь, как правило, более быстрый и менее трудоемкий.

Контрольные вопросы

1. В чем различие между информацией и данными?

2. Как выражается адекватность информации?

3. Назовите признаки классификации экономической информации.

4. Что такое структура информации?

5. Чем показатель отличается от реквизита?

6. Укажите основные свойства информации.

7. Что входит в состав информационного обеспечения?

8. Чем внемашинное информационное обеспечение отличается от внуримашинного?

9. Какие бывают классификаторы и с какой целью разрабатываются классификаторы?

10. Каково назначение штрихового кодирования? В чем его особенности?

11. Определите понятия «классификаторы» и «коды».

12. Чем автоматизированные банки данных отличаются от баз знаний?

13. Что входит в состав автоматизированных банков данных?

14. Чем клиент-серверная архитектура отличается от файл-серверной?

15. Укажите основные характеристики СУБД.

16. Что подразумевает обеспечение целостности данных?

17. Охарактеризуйте типы моделей описания баз данных.

4. информационные технологии в управлении и экономике

Виды моделей данных БД

Модели организации данных. Сетевые, реляционные, иерархические модели.

Ядром любой базы данных является модель данных. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.

Модель данных - это совокупность структур данных и операций их обработки. Рассмотрим три основных типа моделей данных: иерархическую, сетевую и реляционную.

Виды моделей данных БД

Иерархическую модель БД изображают в виде дерева. Элементы дерева вершины представляют совокупность данных, например логические записи.

Иерархическая модель представляет собой совокупность элементов, расположенных в порядке их подчинения от общего к частному и образующих перевернутое по структуре дерево (граф).

К основным понятиям иерархической структуры относятся уровень, узел и связь. Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину, не подчиненную никакой другой вершине и находящуюся на самом верхнем - первом уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и т. д. уровнях. Количество деревьев в базе данных определяется числом корневых записей. К каждой записи базы данных существует только один иерархический путь от корневой записи.

Сетевые модели БД соответствуют более широкому классу объектов управления, хотя требуют для своей организации и дополнительных затрат.

В сетевой структуре при тех же основных понятиях (уровень, узел, связь) каждый элемент может быть связан с любым другим элементом.

Реляционная модель БД представляет объекты и взаимосвязи между ними в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами. На этой модели базируются практически все современные СУБД. Эта модель более понятна, "прозрачна" для конечного пользователя организации данных.

Реляционная модель данных объекты и связи между ними представляет в виде таблиц, при этом связи тоже рассматриваются как объекты. Все строки, составляющие таблицу в реляционной базе данных, должны иметь первичный ключ. Все современные средства СУБД поддерживают реляционную модель данных.

Эта модель характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

1. Каждый элемент таблицы соответствует одному элементу данных.

2. Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип и длину.

3. Каждый столбец имеет уникальное имя.

4. Одинаковые строки в таблице отсутствуют;

5. Порядок следования строк и столбцов может быть произвольным.

Лекция 5

Базы данных информационных систем

База данных. Классификация и характеристика СУБД.

Основные модели баз данных.

Базы данных в экономических системах

База данных определяется как совокупность взаимосвязанных данных, характеризующихся: возможностью использования для большого количества приложений; возможностью быстрого получения и модификации необходимой информации; минимальной избыточностью информации; независимостью от прикладных программ; общим управляемым способом поиска.

СУБД – это программа, с помощью которой реализуется централизованное управление данными, хранимыми в базе, а также доступ к ним, поддержка их в актуальном режиме.

Задачами СУБД являются:

Хранение информации в структурированном виде;

Обновление информации по мере необходимости;

Поиск нужной информации по определенным критериям;

Выдача информации пользователю в удобном для него виде;

Устранение избыточности данных;

Поддержка языков БД.

Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД, начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных.



По технологии работы с базами данных существуют:

Централизованные СУБД;

Распределенные СУБД.

Централизованная СУБД - система управления базой данных, которая хранится в памяти одной вычислительной системы.

Системы централизованных баз данных с сетевым доступа предполагают две основные архитектуры:

¾ архитектура файл-сервер предполагает выделение одной из машин сети в качестве центральной (главный сервер файлов), где хранится совместно используемая централизованная база данных. Все другие машины сети исполняют роль рабочих станций. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится их обработка. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает;

¾ архитектура клиент-сервер . Каждый из подключенных к сети и составляющих эту архитектуру компьютеров играет свою роль: сервер владеет и распоряжается информационными ресурсами системы, клиент имеет возможность пользоваться ими.

Сервер базы данных представляет собой СУБД, параллельно обрабатывающую запросы, поступившие со всех рабочих станций. Как правило, клиент и сервер территориально отдалены друг от друга, и в этом случае они образуют систему распределенной обработки данных.

В распределенной СУБД значительная часть программно-аппаратных средств централизована и находится на одном достаточно мощном компьютере (сервере), в то время как компьютеры пользователей несут относительно небольшую часть СУБД, которую называют клиентом.

Распределенная база данных состоит из нескольких, возможно, пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Однако пользователь распределенной базы данных не обязан знать, каким образом ее компоненты размещены в узлах сети, и представляет себе эту базу данных как единое целое. Работа с такой базой данных осуществляется с помощью системы управления распределенной базой данных (СУРБД).

Безопасность данных в базе данных достигается:

¾ шифрованием прикладных программ;

¾ шифрованием данных;

¾ защитой данных паролем;

¾ ограничением доступа к базе данных.

Основные модели баз данных

Основное различие между моделями баз данных состоит в характере описания взаимосвязи и взаимодействия между объектами и атрибутами базы данных. Связи объектов могут быть следующих типов:

¾ "один к одному";

¾ "один ко многим";

¾ "многие ко многим".

"Один к одному" - это взаимно однозначное соответствие, которое устанавливается между одним объектом и одним атрибутом. Связь "один-к-одному" определяет такое отношение между таблицами, когда каждой записи в подчиненной таблице соответствует только одна запись в главной таблице. Наличие связей между таблицами "один-к-одному" обычно не говорит о хорошей структуре базе данных, поскольку свидетельствует о том, что две таблицы имеют полностью совпадающие поля, а это ведет к нерациональному расходу дискового пространства.

Связь "один-ко-многим" в структурах баз данных является наиболее общепринятой. При этом типе связи каждой записи главной таблицы соответствует одна или несколько записей в подчиненной таблице. Структура связей типа "один-ко-многим" позволяет избежать избыточности данных и дублирования записей.

Связь типа "многие-ко-многим" выражает такое отношение между таблицами, когда многие записи одной таблицы могут быть связаны со многими записями другой таблицы.

Иерархическая модель баз данных (ИМД) основана на графическом способе и предусматривает поиск данных по одной из ветвей «дерева», в котором каждая вершина имеет только одну связь с вершиной более высокого уровня. Для осуществления поиска необходимо указать полный путь к данным, начиная с корневого элемента.

Рис. 1 – Иерархическая модель баз данных

Сетевая модель баз данных (СМД) также основана на графическом способе, но допускает усложнение «дерева» без ограничения количества связей, входящих в вершину. Это позволяет строить сложные поисковые структуры.

Рис. 2 – Сетевая модель баз данных

Реляционная модель баз данных (РМД) реализует табличный способ.

В реляционной модели базы данных взаимосвязи между элементами данных представляются в виде двумерных таблиц, называемых отношениями .

Отношения обладают следующими свойствами :

¾ каждый элемент таблицы представляет собой один элемент данных (повторяющиеся группы отсутствуют);

¾ элементы столбца имеют одинаковую природу, и столбцам однозначно присвоены имена;

¾ в таблице нет двух одинаковых строк;

¾ строки и столбцы могут просматриваться в любом порядке вне зависимости от их информационного содержания.

Реляционная модель БД имеет дело с тремя аспектами данных: со структурой данных, с целостностью данных и с манипулированием данными. Под структурой понимается логическая организация данных в БД, под целостностью данных понимают безошибочность и точность информации, хранящейся в БД, под манипулированием данными - действия, совершаемые над данными в БД.

Достоинства реляционной модели :

¾ простота построения;

¾ доступность понимания;

¾ возможность эксплуатации базы данных без знания методов и способов ее построения;

¾ независимость данных;

¾ гибкость структуры и др.

Недостатки реляционной модели :

¾ низкая производительность по сравнению с иерархической и сетевой модели;

¾ сложность программного обеспечения;

¾ избыточность элементов.

В последние годы все большее признание и развитие получают объектные базы данных (ОБД), появление которых обусловлено развитием объектно-ориентированного программирования.

Объектом называют почти все, что представляет интерес для решения поставленной задачи на компьютере. Это может быть экранное окно, кнопка в окне поле для ввода данных, пользователь программы, сама программа и т.д. Тогда любые действия можно привязать к такому объекту, а также описать, что произойдет с объектом при выполнении опреде6ленных действий (например, при „нажатии“ кнопки). Многократно используемый объект можно сохранить и применять его в различных программах.

Объектом называется программно связанный набор методов (функций) и свойств, выполняющих одну функциональную задачу.

Свойство - это характеристика, с помощью которой описывается внешний вид и работа объекта.

Событие - это действие, которое связанно с объектом. Событие может быть вызвано пользователем (щелчок мышью), инициировано прикладной программой или операционной системой.

Метод - это функция или процедура, управляющая работой объекта при его реакции на событие.

Объекты могут быть как визуальными, т.е. которые можно увидеть на экране дисплея (окно, пиктограмма, текст и т.д.), так и невизуальные (например, программа решения какой-либо функциональной задачи).

Данные в базах данных организуются в соответствии с одной из моделей данных.

С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними. Т.о. основой любой БД является модель данных.

Модель данных – совокупность структур данных и операций по их обработке.

К классическим моделям представления данных относят иерархическую, сетевую и реляционную. Иерархическая и сетевая модели данных стали применяться в системах управления базами данных в начале 60-х годов. В начале 70-х годов была предложена реляционная модель данных. Эти три модели различаются в основном способами представления взаимосвязей между объектами.

Основные модели представления данных:

1. Иерархическая модель данных представляет информационные отображения объектов реального мира – сущности и их связи в виде ориентированного графа или дерева (рис. 2). Узлы и ветви образуют иерархическую древовидную структуру. Узел является совокупностью атрибутов, описывающих объект. Наивысший в иерархии узел называется корневым (это главный тип объекта). Корневой узел находится на первом уровне. Зависимые узлы (подчиненные типы объектов) находятся на втором, третьем и др. уровнях. В такой модели у каждого объекта есть только один исходный (за исключением корневого объекта), но в принципе может быть несколько зависимых (порожденных).

Рис.17. Структура иерархической модели

Ветви между объектами отображают наличие некоторого отношения, причем название отношения пишется на ребре. Например, между объектами «клиент» и «заказ» может быть отношение, которое называется «делает», а между «заказ» и «товары» - отношение «состоит из». Этот тип модели отражает вертикальные связи, подчинение нижнего уровня верхнему, т.е. к каждой записи БД есть только один (иерархический) путь от корневой записи.

Примером такой модели может служить БД, содержащая сведения о ВУЗе (на примере БелГСХА)

2. Сетевая модель – является расширением иерархической модели, нов отличие от нее присутствуют горизонтальные связи (рис. 3). В данной модели данных любой объект может быть и главным и подчиненным. Структура называется сетевой, если в отношениях между данными порожденный элемент имеет более одного исходного. Сетевая модель предоставляет большие возможности по сравнению с иерархической, однако она сложнее в реализации и использовании. Примером может служить структура БД, содержащей сведения о студентах, участвующих в НИРС. Возможно участие одного студента в нескольких темах, а также нескольких студентов в разработке одной темы.

Рис. 18. Представление связей в сетевой модели

3. Реляционная модель. Понятие реляционной модели данных (от английского relation – отношение) связано с разработками Эриха Кодда. Эта модель характеризуется простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования аппарата реляционной алгебры для обработки данных.


Реляционная модель ориентирована на организацию данных в виде двумерных таблиц, связанных между собой определенными отношениями.

Реляционная таблица обладает следующими свойствами :

ü таблица должна иметь имя;

ü каждый элемент таблицы – один элемент данных;

ü все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный или другой) и длину;

ü каждый столбец имеет уникальное имя;

ü одинаковые строки в таблице отсутствуют;

ü порядок следования строк и столбцов может быть произвольным;

ü таблица должна быть простой, т.е. не содержать составных столбцов;

ü должен быть известен первичный ключ.

Таблица реляционной БД состоит из некоторого числа однотипных записей, или кортежей. Слово «однотипных» означает, что все записи обладают одним и тем же набором атрибутов, или полей, хотя для каждой записи атрибут может принимать свое собственное значение.

Рассмотрим таблицу, содержащую данные о сотрудниках предприятия

Для логического представления взаимосвязей объектов базы данных используется информационно-логическая (инфологическая) модель.

Известны три разновидности инфологических моделей баз данных:

· иерархическая;

· сетевая;

· реляционная.

Иерархическая модель данных представляет собой древовидную структуру, где каждому элементу (объекту) соответствует только одна связь с элементом (объектом) более высокого уровня. Примером иерархической модели может служить реестр Windows, демонстрирующий размещение файлов и папок разного уровня вложенности на дисках компьютера, а также генеалогическое дерево.

Достоинствами иерархической модели являются простота и быст­родействие. Запрос к такой базе обрабатывается быстро, поскольку поиск данных происходит по одной из ветвей дерева, опускаясь от родительских объектов к дочерним или наоборот (поиск вверх по дереву обрабатывается дольше).

Если структура данных предполагает более сложные взаимосвязи, чем обычная иерархия, то для организации информации применяют иные модели.

Сетевая модель данных позволяет, в целях объединения родственной информации, обеспечивать связи одних элементов с любыми другими, не обязательно родительскими. Эта модель подобна иерархической и является улучшенным её вариантом.

В сетевой модели данных каждый элемент может иметь более одного порождающего его элемента, а графическое представление модели напоминает сеть. Она допускает усложнение «дерева» без ограничения количества связей, входящих в его вершину.

Особенностью иерархических и сетевых баз данных является задаваемая заранее, ещё на стадии проектирования, жесткая структура записей и наборы отношений, а изменение структуры базы данных требует перестройки всей базы. Кроме того, поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель является зависимой от приложения. Иными словами, если необходимо изменить структуру данных, то может потребоваться и изменение приложения.

Сетевые базы считаются инструментами программистов. Так, например, чтобы получить ответ на запрос: «Какой товар наиболее часто заказывает компания X?», нужно написать некоторый программный код для навигации по базе данных. Реализация пользовательских запросов может затянуться, и к моменту появления запрошенной информации она перестанет быть актуальной.

Реляционная модель достаточно универсальна, она значительно упрощает структуру базы данных и облегчает работу с ней. В реляционной базе данных все данные, доступные пользователю, организованы в виде таблиц. У каждой таблицы имеется свое уникальное имя, соответствующее характеру ее содержимого. Столбцы таблицы, называемые полями , описывают определённые атрибуты информации, например: фамилию, имя, пол, возраст, номер телефона, социальное положение респондентов. Строки реляционной таблицы содержат записи и хранят информацию об одном экземпляре объекта данных, представленного в таблице, например данные об одном человеке. Одинаковых записей в таблице быть не должно.



Основное требование к реляционной базе данных состоит в том, чтобы значения полей (столбцов таблицы) были элементарными и неделимыми информационными единицами (то есть для записи адреса потребуется не одно, а несколько полей, содержащих неделимую информацию – улица, номер дома, номер квартиры). Это позволяет применять для обработки информации математический аппарат реляционной алгебры. Наиболее популярны реляционные СУБД - Access, FoxPro, dBase, Oracle, и др.

В реляционной БД содержится, как правило, несколько таблиц с различными сведениями. Разработчик БД устанавливает связи между отдельными таблицами . При создании связей используют ключевые поля .

После установления связей появляется возможность создания запросов, форм и отчетов, в которые помещаются данные из нескольких связанных между собой таблиц.

Все данные, доступные пользователю в реляционной БД, организованы в виде таблиц-отношений, представляющих собой двумерный массив, где каждая таблица имеет свое уникальное имя, соответствующее характеру ее содержимого.

В настоящее время большинство СУБД использует табличную (реляционную) модель данных.

Достоинства реляционной модели:

· Простота и доступность для понимания конечным пользователем, так как единственной информационной конструкцией является наглядная таблица.

· Полная независимость данных. При изменении структуры БД не требуется значительных изменений в прикладной программе.

Недостатки реляционной модели:

· Предметную область не всегда можно представить в виде совокупности таблиц.

· Низкая скорость обработки запросов по сравнению с другими моделями, а также требование большего объема внешней памяти.

Примером простой реляционной базы данных может служить таблица «Респонденты», где одна строка (запись) - сведения об одном из участников телефонного опроса.


Статьи по теме: