Ардуино: трехцветный светодиод — RGB. Как подключать RGB светодиоды, схемы управления

В этой статье будут рассмотрены практические механизмы формирования и изменения параметров цвета светодиодного светильника, проблемы при этом возникающие и способы их решения. Все, что описано в статье – это мой опыт работы со светом при реализации проекта .

Как формируется цвет при помощи светодиодов.

Начнем с самого начала — определимся, как формируется цвет, вообще, в жизни (все знают, но на всякий случай …). Любой оттенок цвета формируется при помощи трех основных цветов. В нашем случае, когда цвет формируют источники света (аддитивный синтез) – это:
— R red красный
— G green зеленый
— B blue синий

Комбинируя всего три основных цвета в разных пропорциях можно получить любой оттенок цвета. Следующую картинку, наверное, видел каждый – она и передает суть вышесказанного

Соответственно, для того чтобы светильник смог сформировать любой оттенок цвета, он тоже должен иметь, как минимум, три источника основных цветов. На практике так и есть. Например, любой RGB-светодиод – это, по факту, три отдельных светодиода (излучающих кристалла) в одном корпусе.

Для управления RGB-светодиодом микроконтроллер должен отдельно управлять каждым из трех основных цветов и иметь три отдельных выхода для каждого цвета.

Управляя светодиодами при помощи цифрового сигнала (включен/отключен) можно получить всего 7 цветов:
— три основных цвета (когда засвечен только один основной цвет)
— три составных цвета (когда засвечено по два основных цвета)
белый цвет (засвечены все три основных цвета)

Для того чтобы получить множество цветовых оттенков, нужно управлять интенсивностью свечения каждого из основных цветов. Для управления интенсивностью свечения применяется широтно-импульсная модуляции цифрового сигнала (ШИМ или PWM). Изменяя скважность сигнала, для глаза создается иллюзия изменения яркости свечения светодиода. Чтобы глаз не замечал переключений светодиода, частота ШИМ-сигнала должна быть не менее 50-60Гц.

Так как в светильнике три источника излучения, соответственно, светильником нужно управлять тремя ШИМ-сигналами R, G, B. Каждый уровень ШИМ (и яркость светильника) – это определенное значение скважности сигнала.

Чаще всего значение скважности задается числом размером в байт – 8 бит (и мы будет использовать байт). Это 256 градаций каждого из основных цветов и 256*256*256=16777213 оттенков цветов вообще. На самом деле — это не совсем так – ниже я расскажу почему.

Из вышесказанного приходим к тому, что МК должен для светодиодного светильника формировать три ШИМ-сигнала частотой выше 60 Гц и с разрешающей способностью 256 значений (8 бит).

Применяя микроконтроллеры AVR (как, впрочем, и любые другие) – это не является проблемой, так как в большинстве из них есть достаточное количество аппаратных 8-ми битных ШИМ формирователей (таймеров), которые минимально расходуя ресурсы МК могут обеспечить любую частоту формирования ШИМ, вплоть до десятков килогерц. В случае применения программных формирователей ШИМ – количество таких формирователей можно увеличить до количества свободных ножек у МК (частота формирования ШИМ, в этом случае, возможна до нескольких килогерц).

Параметры регулирования LED-светильника.

Определимся с параметрами цвета, которые нам-бы хотелось изменять. Раз мы имеем три значения скважности для основных цветов R, G, B, логично было-бы регулировать именно эти три параметра — то есть интенсивности красной, зеленой и синей составляющей цвета. На практике — это не очень правильный подход, так как не позволяет комфортно выбрать цвет нашего светильника. Например, для того чтобы сделать яркость светильника меньше оставив цвет свечения прежним. Нужно провернуть сразу три регулятора, еще и на разный угол. Фактически, каждое изменение (подстройка) нашего светильника будет выглядеть как настройка его с нуля. Гораздо естественней регулировать яркость (или какой либо другой параметр) одним регулятором.

Вообще, существует множество систем регулирования (выбора цвета) для различных применений

Система RGB — это одна из них, с тремя регуляторами для каждого из основных цветов, как описано выше.

Системы XYZ , LAB и другие, нам не очень подходят.

Наиболее естественно изменяет (задает) параметры освещения — система HS B (и подобные ей HSL, HSV). В HSB палитра цветов формируется путем установки различных значений базовых параметров:

Hue (оттенок цвета). Задается в градусах от 0 до 360. 0 – красный цвет. 120 – зеленый, 240 – синий. Все что между ними – смешение основных цветов.
Мы будем использовать значение Hue размером в байт (от 0 до 255) .
0 – красный цвет. 85 – зеленый, 170 – синий.

Saturation (насыщенность). Задается в процентах от 0 до 100. 100 – это максимальная насыщенность цвета. При уменьшении к нулю – это потеря цвета вплоть до серого.
Мы будем использовать значение Saturation размером в байт (от 0 до 255).

Brightness (яркость). Задается в процентах от 0 до 100. 100 – это максимальная яркость цвета (но не белый цвет!). При уменьшении к нулю – это потеря яркости вплоть до черного.
Мы будем использовать значение Brightness размером в байт (от 0 до 255).

Если использовать эту систему при регулировке цвета, то получается все очень удобно. Крутим один регулятор – меняем цветовой тон (оставаясь в той-же яркости), крутим другой – меняем яркость (не меняя цвета) – здорово! Но есть у системы и недостатки. Первый — храня значения в переменных размером в байт, мы теряем часть информации о цвете (например, для хранения всех возможных вариантов для цветового тона нужно 768 значений, а мы все это пытаемся уложить в 256 значений). Второй – все равно, в итоге, конечное значение должно быть в системе RGB для вывода ШИМ-сигналов на светодиоды. И третий – в случае, когда нужно будет еще какое либо преобразование – это будет гораздо сложнее сделать с системой HSB, чем с RGB.

В устройстве AAL я решил реализовать различные преобразования следующим образом:
1 Информация о цвете хранится в трех байтах R_ base, G_ base, B_ base (система RGB). Я назвал это значение базовым. Оно хранит информацию о цвете без потерь.
2 Для преобразований используется значение величины преобразования (сдвига) Shift размером в байт.
3 Нужное преобразование осуществляется в соответствующих процедурах, исходными данными для которых служат базовое значение цвета R_base, R_base, R_base и величина соответствующего преобразования Shift. На выходе мы получаем три значения в системе RGB (R_ shift, G_ shift, B_ shift ), которые выдаются на светодиоды в виде ШИМ-сигналов.

При такой схеме, нам удобно управлять различными параметрами света и мы сохраняем максимально точно информацию о начальном (базовом) цвете.

Реализация преобразований цвета в микроконтроллере.

Проблема реализации управления цветом в микроконтроллере заключается в том, что для подавляющего большинства преобразований требуется умножение байта на дробный коэффициент преобразования (число от 0 до 1).
Например, уменьшение яркости вдвое:
R_shift = R_base * 0,5
G_shift = G_base * 0,5
B_shift = B_base * 0,5

С целочисленным умножением в AVR-микроконтроллерах все прекрасно (8-ми битное умножение осуществляется одним оператором всего за 2 такта — до 10 миллионов умножений в секунду!), а вот если мы перейдем в систему чисел с плавающей запятой – это будет на пару порядков медленнее и очень громоздко. В случаях, где нужны будут быстрые пересчеты большого количества значений, микроконтроллер просто не будет успевать.
Еще хуже дело с делением (это как вариант уйти от дробного умножения) — аппаратного его просто нет. Программная реализация деления тоже довольно громоздка.

В идеале, все преобразования цвета желательно реализовать при помощи целочисленного умножения, сдвигов бит, сложения и вычитания. Деление вообще не желательно применять.
Вот этим мы сейчас и займемся!

Проблема умножения на дробный коэффициент решается очень просто! Если в качестве коэффициента использовать значение размером в байт (0 – 255), принимая максимальное значения байта (255) за единицу, то можно обойтись только целочисленным умножением.

0 ~ 0/255 = 0
10 ~ 10/255 = 0,04
128 ~ 128/255 = 0,5
255 ~ 255/255 = 1

Теперь, предыдущий пример будет выглядеть следующим образом:
R_shift = (R_base * 128) / 255
G_shift = (G_base * 128) / 255
B_shift = (B_base * 128) / 255

После умножения двух 8-ми битных значений (R_base*128) мы получаем 16-ти битный результат (два байта). Откидывая младший байт и используя только старший — мы осуществляем деление значения на 256.
Деля на 256 , вместо положенных 255 , мы вносим в результат небольшую погрешность. В нашем случае, когда результат используется для формирования яркости посредством ШИМ, погрешностью можно пренебречь, так как она не будет заметна для глаз.

В ассемблере реализация такого способа умножения на коэффициент элементарна и трудностей не вызовет (всего пара операторов). В языках высокого уровня, нужно позаботиться о том, чтобы компилятор не стал создавать избыточный код.

Переходим к самим преобразованиям.

Напомню, в любом преобразовании участвуют:
— базовый цвет, заданный тремя переменными R_base, G_base, B_base (размер Byte)
— коэффициент преобразования Shift (размер Byte)

Результат:
— «сдвинутый» цвет, в виде трех значений R_shift, G_shift, B_shift (размер Byte)

Записи формул ниже могут показаться странными, но я их прописывал таким образом, чтобы, во-первых, было видно последовательность действий, во-вторых, максимально упростить действия, сводя все к 8-битному умножению, сложению, вычитанию и сдвигу бит.

Яркость (Brightness)

— самое простое преобразование.
При:
Shift=0 светодиод погашен
Shift=255 светодиод горит базовым цветом.
Все промежуточные значения Shift – это затемнение базового цвета.

R_shift = (R_base * Shift) / 256
G_shift = (G_base * Shift) / 256
B_shift = (B_base * Shift) / 256

* напоминаю, деление на 256 — это просто откидывание младшего байта результата целочисленного умножения 2-х байт.

Осветление (Tint)

— эта величина не входит в систему HSB, но ее удобно использовать в регулировках. Tint – это, своего рода продолжение регулировки яркости в белый цвет.
При:
Shift=0 – светодиод горит базовым цветом
Shift=255 – светодиод горит белым цветом
Все промежуточные значения Shift – это осветление базового цвета.

R_shift = (R_base*(255 — Shift)) / 256 + Shift
G_shift = (G_base*(255 — Shift)) / 256 + Shift
B_shift = (B_base *(255 — Shift)) / 256 + Shift

* коэффициент (255 — Shift) можно реализовать одним оператором – битовой инверсией (конечно, при условии, что Shift — это Byte|Char)

Светимость (Lightness)

— эта величина тоже не входит в систему HSB. Регулировка осуществляется от выключенного светодиода, через базовый цвет и к белому цвету.
При:
Shift=0 – светодиод погашен
Shift=128 – светодиод горит базовым цветом
Shift =255 – светодиод горит белым цветом.

Реализуется посредством двух предыдущих преобразований.
При Shift < 128 применяем Brightness c Shift(for Brightness) = Shift*2
При Shift >=128 применяем Tint c Shift(for Tint) = (Shift-128)*2

Насыщенность (Saturation)

— цветность — переход от серого к цветному
При:
Shift=0 – светодиод горит белым цветом с яркостью, равной среднему значению базового цвета
Shift=255 – светодиод горит базовым цветом
Все промежуточные значения Shift – это «потеря» цвета.

RGB_average= ((R_base + B_base)/2 + G_base) / 2

* правильней, конечно, так (R_base + G_base + B_base)/3, но придется делить на 3, а это сдвигом не сделаешь

R_shift = (R_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256
G_shift = (G_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256
B_shift = (B_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256

Изменение тона (Hue)

Круговое изменение оттенка цвета.
Сложное преобразование, которое отличается в каждой из трех зон значений Shift
К примеру, если базовый цвет красный, то при:
Shift=0 – светодиод светится красным
Shift=85 – светодиод светится зеленым
Shift=170 – светодиод светится синим
Shift=255 – светодиод снова светится красным

При Shift < 86:
Shift_a= Shift * 3
R_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256
G_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256
B_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256

При Shift > 85 and Shift < 171:
Shift_a= (Shift-85) * 3
R_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256
G_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256
B_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256

При Shift > 170:
Shift_a= (Shift-170) * 3
R_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256
G_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256
B_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256

Инверсия (Inversion)

— представляет собой переход от одного цвета к его инверсному варианту. Например, инверсный цвет для красного – это голубой.
Shift=0 – светодиод светится базовым цветом
Shift=128 – светодиод горит белым (серым) цветом – средняя точка инверсии
Shift=255 – светодиод светится цветом инверсным базовому
Все промежуточные значения Shift – это плавные переходы между цветами.

R_shift = ((255 — R_base) * Shift) / 256 + (R_base * (255 — Shift)) / 256
G_shift = ((255 — G_base) * Shift) / 256 + (G_base * (255 — Shift)) / 256
B_shift = ((255 — B_base) * Shift) / 256 + (B_base * (255 — Shift)) / 256

Пока это все параметры, которые я надумал регулировать. Если придумаю еще чего интересно, то добавлю сюда позже.

Осталась еще одна проблема, которую хотелось бы затронуть в разрезе этой статьи –

Нелинейность восприятия ШИМ человеческим глазом

Оказывается, что человеческий глаз воспринимает яркость свечения светодиода нелинейно. Эта проблема давно известна и с разной степенью успешности ее решают производители разного оборудования. Есть исследования и экспериментальные формулы. Вот, например, график зависимости из .

Из графика видно, что в начальных областях регулирования, яркость нам кажется в три раза больше чем измеренная прибором.

То есть, если этот фактор не учитывать, то крутя условную ручку регулятора, мы все изменения получим за первую половину оборота, а вторая половина фактически не будет заметно изменять текущего состояния.

Именно из-за эффекта нелинейности я выше писал о том, что, по факту, 3х-байтный (24битный) цвет совсем не дает те 16 миллионов оттенков, как любят писать многие производители. Полноценных оттенков, в лучшем случае, будет на порядок меньше.

Как решить проблему нелинейность восприятия ШИМ человеческим глазом?
В идеале, нужно использовать одну из экспериментально выведенных формул, но, часто, они слишком сложные для вычисления в микроконтроллере.
Еще, можно создать таблицу значений для пересчета ШИМ (уменьшив время вычислений, но пожертвовав частью памяти МК).
В нашем случае, когда нет необходимости в большой точности передачи нюансов яркости, можно применить упрощенную формулу, так называемой, мощности излучения:

R_PWM = (R_shift * R_shift) / 256
G_PWM = (G_shift * G_shift) / 256
B_PWM = (B_shift * B_shift) / 256

* умножаем значение само на себя и откидываем младший байт результата.

Вот это, наверное, и все, о чем я Вам хотел рассказать по LED цвету. Все преобразования, описанные в статье, реализованы мною в устройстве AAL. Кроме того, я сделаю отдельный модуль Color в Демонстрацию алгоритмов на RGB-светодиоде и WS2812-пикселе можно посмотреть .

(Visited 10 683 times, 1 visits today)

На этом занятии мы будем использовать цифровые и аналоговые выходы с «широтно импульсной модуляцией» на плате Arduino для включения RGB светодиода с различными оттенками. Использование RGB LED ленты позволяет создать освещение интерьера с любым оттенком цвета. Расскажем про устройство и распиновку полноцветного (RGB) светодиода и рассмотрим директиву #define в языке C++.

Устройство и назначение RGB светодиода

Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red - красный, Green - зеленый, Blue - синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении . Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.

RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке .

Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино

Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим RGB светодиод к Ардуино и заставим его светится всеми цветами радуги с помощью «широтно импульсной модуляции».

Управление RGB светодиодом на Ардуино

Аналоговые выходы на Ардуино используют «широтно импульсную модуляцию» для получения различной силы тока. Мы можем подавать на все три цветовых входа на светодиоде различное значение ШИМ-сигнала в диапазоне от 0 до 255, что позволит нам получить на RGB LED Arduino практически любой оттенок света.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • RGB светодиод;
  • 3 резистора 220 Ом;
  • провода «папа-мама».

Фото. Схема подключения RGB LED к Ардуино на макетной плате

Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч.

Скетч для мигания RGB светодиодом

#define RED 11 // Присваиваем имя RED для пина 11 #define GREEN 12 // Присваиваем имя GREEN для пина 12 #define BLUE 13 // Присваиваем имя BLUE для пина 13 void setup () { pinMode(RED, OUTPUT ); pinMode(GREEN, OUTPUT ); // Используем Pin12 для вывода pinMode(BLUE, OUTPUT ); // Используем Pin13 для вывода } void loop () { digitalWrite (RED, HIGH ); // Включаем красный свет digitalWrite (GREEN, LOW ); digitalWrite (BLUE, LOW ); delay (1000); digitalWrite (RED, LOW ); digitalWrite (GREEN, HIGH ); // Включаем зеленый свет digitalWrite (BLUE, LOW ); delay (1000); // Устанавливаем паузу для эффекта digitalWrite (RED, LOW ); digitalWrite (GREEN, LOW ); digitalWrite (BLUE, HIGH ); // Включаем синий свет delay (1000); // Устанавливаем паузу для эффекта }

Пояснения к коду:

  1. с помощью директивы #define мы заменили номер пинов 11, 12 и 13 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
  2. в процедуре void setup() мы назначили пины 11, 12 и 13, как выходы;
  3. в процедуре void loop() мы поочередно включаем все три цвета на RGB LED.
  4. Плавное управление RGB светодиодом

    Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «широтно импульсной модуляцией». Для этого цветовые входы на светодиоде необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на них различные значения ШИМ (PWM) для различных оттенков. После подключения модуля с помощью проводов «папа-мама» загрузите скетч.

    Скетч для плавного мигания RGB светодиода

    #define RED 9 // Присваиваем имя RED для пина 9 #define GREEN 10 // Присваиваем имя GREEN для пина 10 #define BLUE 11 // Присваиваем имя BLUE для пина 11 void setup () { pinMode (RED, OUTPUT ); // Используем Pin9 для вывода pinMode (GREEN, OUTPUT ); // Используем Pin10 для вывода pinMode (BLUE, OUTPUT ); // Используем Pin11 для вывода } void loop () { analogWrite (RED, 50); // Включаем красный свет analogWrite (GREEN, 250); // Включаем зеленый свет analogWrite (BLUE, 150); // Включаем синий свет }

    Пояснения к коду:

    1. с помощью директивы #define мы заменили номер пинов 9, 10 и 11 на соответствующие имена RED , GREEN и BLUE . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
    2. пины 11, 12 и 13 мы использовали, как аналоговые выходы analogWrite .

Светящиеся только красным - R , зеленым - G , синим - B или белым - CW цветом, как правило, подключаются непосредственно к источнику постоянного тока напряжением 12 В или 24 В. R G B светодиодную ленту, как и монохромные, тоже можно подключить к блоку питания постоянного тока, соединив выводы R , G и B между собой.

Но в таком случае будет упущена возможность реализации цветовых эффектов освещения, ради которых лента и была создана. Поэтому при установке цветных светодиодных лент, в разрыв цепи между блоком питания и лентой обычно устанавливают электронный контроллер. Он позволяет в автоматическом режиме изменять цвет и яркость свечения ленты в динамическом режиме по заданной с пульта дистанционного управления программе.

На фотографии изображена электрическая схема подключения R G B светодиодной ленты к сети 220 В. Блок питания (адаптер) преобразует переменное напряжение 220 В в напряжение постоянного тока 12 В, которое по двум проводам с соблюдением полярности подается на R G B контроллер. К контроллеру посредством четырех проводов в соответствии с маркировкой подключается светодиодная лента. Для удобства монтажа и ремонта светодиодного освещения узлы между собой соединяются с помощью разъемов.

Электрическая схема LED R G B светодиода SMD-5050

Для подключения, а тем более ремонта R G B светодиодной ленты на профессиональном уровне, необходимо представлять, как она устроена, и знать электрическую схему и распиновку применяемых в лентах светодиодов. На фотографии ниже представлен фрагмент R G B светодиодной ленты с нанесенной схемой распайки кристаллов светодиодов.

Как видно на схеме, кристаллы в светодиоде электрически не связаны между собой. Три разноцветных кристалла в одном корпусе светодиода образуют триаду. Благодаря такой конструкции, управляя яркостью свечения каждого кристалла индивидуально можно получить бесконечное количество цветов свечения светодиода. На таком принципе управления цветом построены дисплеи сотовых телефонов, навигаторов, фотоаппаратов, компьютерных мониторов, телевизоров и многих других изделий.

Технические характеристики светодиода SMD-5050 приведены на странице сайта «Справочник по SMD светодиодам» .

Электрическая схема LED R G B ленты на светодиодах SMD-5050

Разобравшись с устройством светодиода легко разобраться и с устройством светодиодной ленты. В верхней части картинки фотография работоспособного отрезка LED R G B ленты, а в нижней его электрическая схема.


Как видно из схемы, одноименные контактные площадки светодиодной ленты, находящиеся с ее правой и левой стороны электрически соединены между собой напрямую. Таким образом, обеспечивается возможность подачи питающего напряжения на ленту с любого конца и на следующий отрезок ленты при ее наращивании.

Кристаллы светодиодов VD1, VD2 и VD3 одинакового цвета свечения соединены последовательно. Для ограничения тока в каждой из цветовых цепей установлены токоограничивающие резисторы. Два из них номиналом 150 Ом, а один 300 Ом, в цепи кристаллов красного цвета. Резистор большего номинала установлен для выравнивания яркости всех цветов с учетом интенсивности излучения кристаллом светодиода и не одинаковой цветовой чувствительности человеческого глаза к разным цветам.

Как разрезать светодиодную ленту на отрезки

Как Вы уже наверно поняли, R G B светодиодная лента любой длины (относиться и к монохромным лентам), состоит из коротких самостоятельных отрезков, представляющих собой законченное изделие. Достаточно подать на контактные площадки напряжение питания и лента будет излучать свет. Для получения отрезка ленты требуемой длины элементарные отрезки соединяют между собой в соответствии с буквенной маркировкой.

Обычно лента выпускается длиной пять метров. В случае необходимости ее можно укоротить, разрезав поперек по линии, нанесенной по центру контактных площадок между маркировкой, бывает, в этом месте дополнительно наносят символическое изображение ножниц. Иногда ленту приходится разрезать, чтобы установить под углом. В таком случае разрезанные одноименные контактные площадки соединяются между собой с помощью пайки отрезками провода .

Способы управления цветом свечения
R G B светодиодных лент

Есть два способа управления цветовым режимом работы R G B светодиодной ленты, с помощью трех выключателей или электронного устройства.

Принцип работы простейшего контроллера на выключателях

Рассмотрим принцип работы самого простого контроллера, на механических выключателях. В качестве выключателя для ручного управления свечением R G B ленты можно применить трех клавишный настенный выключатель, предназначенный для включения люстр и светильников в бытовую сеть 220 В. Электрическая схема подключения тогда будет иметь следующий вид.


Резисторы R1-R3 служат для ограничения тока и их можно устанавливать в любом месте цепи питания кристаллов одного цвета. По этой схеме можно подключать R G B ленты, рассчитанные на напряжение питания как 12 В, так и 24 В.

Как видно из схемы, плюсовой вывод блока питания подключается непосредственно к плюсовому выводу светодиодной ленты, который является общий для светодиодов всех цветов, а минусовой вывод подключается к R , G и B контактам ленты через выключатель. Коммутатором из трех выключателей можно получить семь цветов свечения ленты. Это самый простой, надежный и дешевый способ управления цветами свечения R G B ленты.

Принцип работы электронного контроллера

Для получения бесконечного количества цветов свечения R G B ленты и в автоматическом режиме динамическое изменение величины светового потока, вместо выключателей используют электрический блок, который называется R G B контроллер. Его включают в разрыв цепи между блоком питания и R G B лентой. Обычно в комплект контроллера входит пульт дистанционного управления, позволяющий на расстоянии управлять режимом его работы, и как следствие режимом свечения светодиодной ленты.

Так как для работы светодиодной ленты требуется, как правило, напряжение постоянного тока 12 В (реже 24 В), то для подключения ее к электросети переменного тока 220 В применяется блок питания или адаптер, преобразующий переменное напряжение в напряжение постоянного тока, которое через разъемное соединение подается на блок контроллера.


Рассмотрим принцип работы RGB контроллера на примере самого простого и широко применяемого контроллера модели LN-IR24. Он состоит из трех функциональных узлов – контроллера управления R G B , силовых ключей и микросхемы инфракрасного сенсора (ИК). Микросхема контроллера прошита на требуемый алгоритм работы светодиодной ленты. Управление микросхемой контроллера осуществляется сигналом, поступающим с микросхемы сенсора ИК. На ИК сенсор управляющий сигнал поступает при нажатии кнопок на пульте дистанционного управления.

Управление подачей питающего напряжения на светодиодную ленту осуществляется с помощью трех полевых транзисторов, работающих в ключевом режиме. При поступлении сигнала с микросхемы контроллера управления RGB на затвор транзистора, его переход сток-исток открывается, и через светодиоды начинает протекать ток, в результате чего они начинают излучать свет. Управление яркостью свечения светодиодов осуществляется за счет высокочастотного изменения ширины импульсов подаваемого питающего напряжения (широтно-импульсной модуляции).

Выбор блока питания и контроллера для R G B ленты

Блок питания для RGB светодиодной ленты, необходимо выбирать, исходя из напряжения ее питания и потребляемого тока. Наиболее популярны светодиодные ленты на напряжение постоянного тока 12 В. Ток потребления по цепям R, G и B можно узнать из этикетки или определить самостоятельно, воспользовавшись справочными данными на светодиоды, изложенными в таблице на странице сайта Справочная таблица параметров популярных SMD светодиодов . Принято мощность потребления ленты указывать на метр ее длины.

Рассмотрим на примере как определить мощность потребления RGB ленты неизвестного типа на напряжение питания 12 В. Например, нужно подобрать блок питания и контроллер для R G B ленты длиной 5 м. Первое что необходимо сделать, определить тип RGB светодиодов установленных на ленте. Для этого достаточно измерять размер боковых сторон светодиода. Допустим, получилось 5 мм×5 мм. По таблице определяем, что такой размер имеет светодиод типа LED-RGB-SMD5050. Далее нужно подсчитать количество корпусов светодиодов на метре длины. Допустим, получилось 30 штук.

Один кристалл светодиода потребляет ток 0,02 А, в одном корпусе размещено три кристалла, следовательно суммарный ток потребления одного светодиода составит 0,06 А. На одном метре длины 30 светодиодов, умножаем ток на количество 0,06 А×30=1,8 А. Но диоды включены по три последовательно, значит, реальный ток потребления метра ленты будет в три раза меньше, то есть 0,6 А. Длина нашей ленты пять метров, следовательно, суммарный ток потребления составит 0,6 А×5 м=3 А.

Расчеты показали, что для питания R G B ленты длиной пять метров нужен блок питания или сетевой адаптер с выходным напряжением постоянного тока 12 В и током нагрузки не менее 3 А. Блок питания должен иметь запас по току, поэтому был выбран, адаптер модели АРО12-5075UV, рассчитанный на ток нагрузки до 5 А. При выборе блока питания нужно учесть, что выходной его разъем должен подходить к разъему R G B контроллера.

При выборе контроллера надо учесть, что ток потребления по отдельно взятому каналу R , G или B будет в три раза меньше. Следовательно, для нашего случая нужно брать контроллер, рассчитанный на напряжение 12 В и максимально допустимым током нагрузки на канал не менее 3 А/3=1 А.

Этим требованиям соответствует, например, R G B контроллер LN-IR24B. Он рассчитан на ток нагрузки до 2 А (можно подключить до 10 метров RGB ленты). Позволяет включать и выключать ленту, выбирать 16 статических цветов и 6 динамических режимов дистанционно, с расстояния до восьми метров, с помощью элегантного пульта ДУ. Питающее напряжение на контроллер подается с блока питания или сетевого адаптера с помощью коаксиального DC Jack. R G B -контроллер LN-IR24B имеет малый вес и габаритные размеры.


Внешний вид подготовленного по результатам расчета комплекта для освещения светодиодной лентой показан на фотографии. В комплект входит блок питания модели АРО12-5075UV, R G B контроллер LN-IR24B с пультом дистанционного управления и R G B светодиодная лента.


Если потребуется подключить несколько пятиметровых R G B лент, то потребуется более мощный контроллер, например, CT305R, позволяющий выдавать ток до 5 А на светодиоды одного цвета. Этим контроллером можно управлять не только с помощью пульта дистанционного управления, но и по сети с компьютера, превратив тем самым R G B освещение в цветомузыкальное сопровождение при прослушивании музыки.

Соединять последовательно светодиодные ленты длиной более пяти метров недопустимо, так как токоведущие дорожки самой ленты имеют малое сечение. Такое подключение приведет к снижению светового потока на участке ленты, превышающего длину пять метров. Если нужно подключить несколько пятиметровых светодиодных лент, то проводники каждой из них подключаются непосредственно к контроллеру.

В мощных моделях контроллеров для подключения внешних устройств используются клеммные колодки, в которых провода зажимаются с помощью винта. Рядом с клеммами обязательно нанесена маркировка. INPUT (IN) означает вход, к этим клеммам подключается внешний блок питания, с которого подается питающее напряжение для самого контроллера и светодиодных лент. Полярность обозначена дополнительными знаками «+» и «-». Несоблюдение полярности при подключении блока питания может вывести контроллер из строя.

Группа клемм для подключения R G B ленты обозначена надписью OUTPUT (OUT) и означает выход. Цвета обозначены буквами R (красный), G (зеленый), B (синий) и V+ (это общий провод любого другого цвета). От ленты обычно идут тоже цветные провода и достаточно просто присоединить их цвет в цвет.

Замечу, что к любому R G B контроллеру, соответствующему по току, можно с успехом подключить монохромную светодиодную ленту . Тогда появится возможность с помощью пульта дистанционного управления менять режим ее свечения – включать, выключать, менять яркость, устанавливать динамический режим изменения яркости.

Если вы хотите самостоятельно усовершенствовать свой компьютер какими-нибудь навороченными «фишками», проще всего использовать для этого светодиоды – они просты в работе, дёшевы и не требуют каких-то особых навыков и ухищрений. Светодиод способен украсить ваше рабочее место, придать ему дополнительное освещение, да и просто поднять настроение. Чтобы подключить светодиод, следуйте нашей пошаговой инструкции.

Вам понадобится

  • 1. светодиоды
  • 2. паяльник и всё, что необходимо для работы с ним
  • 3. резисторы, которые будут снижать напряжение и силу тока от источника питания
  • 4. разъёмы, необходимые для подключения светодиодов к компьютеру
  • 5. тестер для проверки напряжения
  • 6. кусачки, чтобы зачищать провода
  • 7. термоусадочная трубка

Инструкция

Перед началом работы убедитесь, что у вас есть все необходимые инструменты и приспособления для работы.

Подключение к разъёму 4-pin molex.Сначала давайте посмотрим, светодиод к разъёму 4-pin molex. Это довольно распространённый разъём в , поэтому вполне возможно, что в вашем компьютере он есть. Этот разъём содержит четыре :1. +12 В (жёлтый провод)
2. +5 В (красный провод)
3. Два контакта заземления (чёрные)Выберите, куда вы хотите диоды – к 12 или к 5 вольтам. Разъём приобретите или выньте из ненужного устройства. Тестером проверьте, соответствуют ли выбранные контакты, определите, где у положительный, а где отрицательный контакты.

Провода зачистите кусачками, резистор припаяйте к положительному контакту разъёма. Соединение закройте термоусадкой. Ко второму контакту резистора припаяйте положительный контакт светодиода. Закройте место термоусадочной трубкой. Возьмите отрицательный контакт светодиода и припаяйте его к контакту «земля» разъёма.

Подключение к USBМожно подключить светодиод и к кабелю с разъёмом USB. Такие кабели существуют двух видов, но принципиальной разницы в ходе работы у них нет, так что найдите любой ненужный кабель и приступайте.В USB находится четыре контакта, два из которых передают данные, один контакт – «земля», а ещё один передаёт напряжение. Вот к нему-то и нужно подключить светодиод. Тестером проверьте напряжение и определите положительный и отрицательный полюса у диода.Кусачками зачистите провода, передающие напряжения. Резистор припаяйте к положительному контакту, место спайки закройте термоусадкой. Ко второму контакту резистора присоедините положительный контакт светодиода и закройте место спайки. Отрицательный контакт диода припаяйте к контакту «земля», закройте место спайки термоусадкой. Подключите USB кабель к компьютеру и проверьте, работает ли он.

Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния — включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция

Статьи по теме: