Где хранить данные? На каких накопителях хранить файлы длительное время? Хранение информаци.

Хранение и накопление информации вызвано ее многократным использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки; осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Хранение информации - это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

В результате реализации такого алгоритма документ, независимо от формы представления поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях: внешнем, концептуальном (логическом), внутреннем, физическом.

Рис. 1.16.

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском - операцией, предполагающей извлечение хранимой информации.

Хранение информации в ЭВМ связано с процессом ее арифметической обработки и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Информационный массив система хранения информации, включающая представление данных и связей между ними, т. е. принципы их организации.

С учетом этого рассматриваются следующие структуры организации информационных массивов: линейная, многомерная.

В свою очередь, линейная структура данных делится на строки, одномерные массивы, стеки, очереди, деки и др.

Строка это представление данных в виде элементов, располагающихся по признаку непосредственного следования, т. е. по мере поступления данных в ЭВМ.

Одномерный массив - это представление данных, отдельные элементы которых имеют индексы, т. е. поставленные им в соответствие целые числа, рассматриваемые как номер элемента массива.

Индекс обеспечивает поиск и идентификацию элементов, а следовательно, и доступ к заданному элементу, что облегчает его поиск по сравнению с поиском в строке.

Идентификация процесс отождествления объекта с одним из известных объектов.

Стек структура данных, учитывающая динамику процесса ввода-вывода информации, использующая линейный принцип организации хранения, реализующий процедуру обслуживания "последним пришел - первым ушел" (первым удаляется последний поступивший элемент).

Очередь структура организации данных, при которой для обработки информации выбирается элемент, поступивший ранее всех других.

Дека структура организации данных, одновременно сочетающая рассмотренные виды.

Нелинейные структуры хранения данных используют многомерные структуры (массивы) следующих видов: деревья, графы, сети.

Элемент многомерного массива определяется индексом, состоящим из набора чисел. Формой представления прямоугольного массива является матрица, каждое значение которой определяется индексом требуемого элемента массива. Так, в двухмерном массиве элементы обозначаются двумя индексами, а в трехмерном тремя.

Списковая структура с механизмом адресных ссылок может быть представлена в виде графа древовидной структуры. В нем каждый элемент списка включает в себя маркерное поле, поле данных и адресное поле. Маркерное поле предупреждает, имеется ли ссылка на другой список или она отсутствует. В зависимости от этого в маркерном поле ставится знак минус или плюс.

Списки так же могут быть показаны ориентированными графами с полями, в которых возможна ссылка вперед и назад. Возникает так называемый симметричный список, и появляется возможность движения в структуре данных в разных направлениях.

Рассмотренные списковые структуры информационных массивов имеют следующие особенности:

  • - высокую логическую простоту;
  • - относительно большое количество времени доступа, обусловленное адресным обращением к данным, при котором к каждому элементу списка необходимо иметь ссылку;
  • - значительное возрастание объема памяти запоминающего устройства по сравнению с последовательной структурой организации информационных массивов, обусловленное адресным обращением к данным.

С учетом рассмотренных структур формирования информационных массивов можно представить ряд способов организации массивов (рис. 1.17) в запоминающих устройствах ЭВТ.

Рис. 1.17. Способы организации массивов информации в запоминающем устройстве ЭВТ

На физическом уровне любые записи информационного поля представляют в виде двоичных символов. Обращение к памяти большого объема требует большой длины адреса. Если память имеет емкость 2n слов, то для поиска таких слов потребуются n-разрядные адреса. В микропроцессорах восьмиразрядные слова дают возможность обращаться к 256 ячейкам памяти, что оказывается недостаточно для хранения информации в автоматизированных системах. Если непосредственно обращение к любой ячейке невозможно, переходят к страничной организации памяти.

В этом случае выбирают область памяти емкостью 2n слов и называют страницей, обращение к которой осуществляется командой, содержащей n-разрядное адресное поле. В микропроцессорах обычно используют страницы размером 256 слов.

Принципы адресации, объемы памяти, количественные характеристики зависят от функционального назначения запоминающих устройств, разделяющимся по уровням функциональной иерархии на сверхоперативные, оперативные, постоянные, полупостоянные, внешние, буферные.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации - это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг), которую можно назвать оперативной (быстрой) памятью или внутренней памятью, поскольку ее носитель находится внутри нас.

Другие носители информации можно назвать внешними (по отношению к человеку), например бумага, которая, непригодна в обычных (не специальных) условиях для длительного хранения информации: на нее оказывают вредное воздействие температурные условия.

Для ЭВТ по материалу изготовления различают бумажные, металлические, пластмассовые, комбинированные и другие носители; по принципу воздействия и возможности изменения структуры выделяют магнитные, полупроводниковые, диэлектрические, перфорационные, оптические и др.; по методу считывания различают контактные, магнитные, электрические, оптические. Хранение информации осуществляется на специальных носителях. информационный поток переработка

Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования, например архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ: анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т. е. упорядоченность, классификация хранимых документов. Она необходима для удобства ведения хранилища: пополнения новыми документами, удаления ненужных, поиска информации и т. д.

Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т. е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Для описания хранения данных используют те же понятия: носитель, хранилище данных, организация данных, время доступа, защита данных. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных и банками данных.

Таким образом, хранение информации представляет собой процесс передачи информации во времени, связанный с обеспечением неизменности состояния материального носителя.

Заключение

Информатика как система получения, передачи и использования информационного ресурса в общественной практике подводит теоретический фундамент под использование ЭВМ и автоматизированных систем, которые и предназначены для усиления информационных процессов в обществе, использования информационного ресурса. Речь идет прежде всего о специальных ИР, основанных на компьютерной технике и реализующих информационный ресурс, т.е. инженерную обработку знаний). Таким образом, предметом информатики является информационный ресурс как симбиоз знания и информации. Он выступает в качестве предмета новой науки и с содержательной, и с формально-математической, и с технической стороны. Необходимо разграничивать предмет информатики как фундаментальной науки, ее объект и инструментарий: основанные на ЭВМ вычислительные системы, программы, сети связи и т. д. Без ЭВМ нет информатики, но нельзя объявлять информатику наукой об ЭВМ. Конечно, практическая необходимость в информатике возникла в связи с использованием ЭВМ. Но, «оттолкнувшись от ЭВМ», информатика во главу угла ставит новые понятия -- информационный ресурс и его социальную полезность, отдачу. Поэтому по аналогии с термодинамикой информатику можно назвать информдинамикой -- наукой о развитии социальных систем под воздействием информационного ресурса (семантической информации).

В последнее время компьютеры «проникли» в жилища людей и постепенно становятся предметами первой необходимости. Есть два основных направления использования компьютеров дома.

Обеспечение нормальной жизнедеятельности жилища:

охранная автоматика, противопожарная автоматика, газоанализаторная автоматика;

управление освещенностью, расходом электроэнергии, отопительной системой, управление микроклиматом;

электроплиты, холодильники, стиральные машины со встроенными микропроцессорами.

Обеспечение информационных потребностей людей, находящихся в жилище:

заказы на товары и услуги;

процессы обучения;

общение с базами данных и знаний;

сбор данных о состоянии здоровья;

обеспечение досуга и развлечений;

обеспечение справочной информацией;

электронная почта, телеконференции;

Понятие, о котором пойдет речь, имеет широкое распространение в повседневной нашей жизни. Информация - слово емкое, относится к общенаучным категориями и занимает важное значение в разных науках.

Само слово пришло к нам из латинского языка и в переводе оно звучит как осведомление. На самом деле это понятие абстрактное и имеет несколько значений, которые зависят конкретно от чего-либо, что определяет виды информации. Но все-таки, значение слова в том, что это, прежде всего, набор конкретных сведений, сохраненных и распространенных. А они, в свою очередь, определяют знания, которые всегда выражаются в разных формах. Они окружают человека всегда и везде, так как без этого существование самой жизни невозможно.

Различные виды информации содержатся повсюду. Все мы знаем, что от семечка яблони вырастет только яблоня и ничего более. Это на генетическом уровне заложено в дереве, и изменить ничего нельзя. Воздух - это источник информации для всех деревьев (и не только): по его состоянию деревья могут определить время, когда надо пробуждаться к жизни. А возьмите Стая летит только определенным маршрутом, который задан в их генах, и свернуть с него для них не представляется возможным.

В современном мире данное определение по представлению, способу хранения и кодирования делится на следующие виды информации:

Графическая (иногда выражается изобразительными средствами);

Звуковая;

Текстовая;

Числовая;

Видеоинформация.

Первый указанный вид сведений существует в рисунках, картинах, фотографиях, схемах, чертежах. Известен уже со времени появления первых представителей будущего общества. Звуковая информация выражается в звуках. Это тоже достаточно древнее определение. Текстовая - это способ обозначения речи символами, то есть буквами. Аналогична ей числовая: кодирование сведений при помощи цифр. Последним изобретением в современном мире стала видеоинформация - способ хранения и передачи «живых» картинок мира. Кроме всех описанных видов сведений, существует еще (ощущения, запахи, вкусы и др.)

Любые виды информации требуют способов ее хранения и передачи, особенно на дальние расстояния. Вначале для этого использовались световые сигналы, затем - радиоволны. Со времени появления компьютеров хранить и передавать любые сведения стало значительно проще. Хранить информацию можно на различных видах электронных носителях: магнитные диски, лазерные диски, специальные устройства для хранения, типа флеш-карты. Каждый день появляются новые способы и устройства. Любое понятие обрабатывается без проблем при помощи компьютера. В обработку входит воспроизведение, передача, преобразование, запись данных. Для этого надо только уметь пользоваться компьютером и специально разработанными для таких действий программами.

И, конечно, основная информация современности представлена в мировой Интернет. Способы хранения и передачи здесь несколько отличаются от привычных и знакомых человеку. Так как ее объемы в Интернете очень большие, то и способы работы с ней особые. Программное обеспечение усовершенствуется каждый день, что дает возможность работать с такой информацией коллективно и постоянно.

Свойства

Информация, как мы уже говорили, это конкретный объект, и как все они, она обладает определенными свойствами, перечислять которые можно долго. Остановимся только на самых важных критериях. Итак, ценная и полезная информация в первую очередь должна быть:

Достоверной;

Объективной;

Актуальной;

Как обеспечить сохранность информации? Не спешите с ответом на этот, казалось бы, простой вопрос. Для начала внимательно изучите преимущества и недостатки доступных средств хранения. С плюсами вам помогут производители, а подводные камни с пучины информационной мы поднимем вместе в этой статье.

Как обеспечить сохранность информации? Какие материалы при этом использовать? Что нужно учитывать при выборе средств хранения? Не спешите с ответами на эти, казалось бы, простые вопросы. Для начала следует внимательно изучить преимущества и недостатки доступных средств хранения. С плюсами вам помогут производители, а подводные камни с пучины информационной мы поднимем вместе с вами в этой статье.

Порой для того, чтобы сохранить жизненно важную информацию, достаточно случайной салфетки или старой визитки. Но для записи финансового отчета или видео с недавнего корпоратива такие средства хранения навряд ли подойдут. Кроме того, существуют огромные объемы информации, представляющей юридическую, коммерческую, историческую или научную ценность. Ее необходимо хранить годами или даже столетиями, в связи с чем выбор средства хранения имеет первостепенную значимость. Что выбрать в динамичном мире технологических новинок и старых проверенных носителей? Предлагаем вашему вниманию обзор основных средств хранения информации с их самой неприглядной стороны.

Бумага

Бумага - старейшее средство хранения информации. Как известно, самопроизвольное изменение свойств бумаги в результате старения связано с изменением химической структуры и, в частности, ее основного компонента – целлюлозы. Развитие технологий положительно сказалось на качестве используемых в производстве материалов. Новые технологические процедуры позволили значительно улучшить физические, химические и электростатические свойства бумаги. Научный прогресс также привел к появлению более продвинутых способов нанесения информации: чернила на основе сажи и перьев, грифельные карандаши, авторучки, типографская краска, ленты для печатных машинок и краски для принтера.

Способ нанесения информации, равно как и качество самого материала, в конечном итоге определяют долговременность хранения данных на бумаге. Наши предки записывали буквы грифелем или чернилами на основе углерода, который не меняет свои свойства столетиями и является химически стойким веществом. Текст обычно наносился с помощью физического повреждения поверхности – методом продавливания. По такой же технологии работали печатные машинки и матричные принтеры, в которых неорганические красители распылялись контактным способом: сначала бумага продавливалась, а затем краситель проникал в материал на заданную глубину.

Этот старый способ нанесения информации посредством механического продавливания не сопоставим с тем, что сегодня используют в обычных струйных и лазерных принтерах. Струйный принтер распыляет жидкие чернила с определенного расстояния без физического изменения поверхности. Глубину проникновения чернил производители не сообщают, впрочем, как и то, из чего они сделаны. С лазерными принтерами ситуация еще хуже. По технологии порошок тонера наносится на бумагу, затем лист проходит через нагретые до высокой температуры ролики, и гранулы порошка спекаются. При этом тонер в бумагу часто вообще не впитывается. Известны случаи, когда через несколько лет краска просто отваливалась от листа целыми кусками, как фрагменты старой мозаики.

Фотопленка

С фотопленкой дела обстоят гораздо лучше, чем с бумагой.

Во-первых, технологии производства, по крайней мере, черно-белой пленки, проверены временем. Они практически не меняются, поэтому можно с уверенностью утверждать, что материалы сохранятся на протяжении длительного времени, даже если вы купите самую обычную пленку из ближайшего фотомагазина. При этом шансы на долгую жизнь у профессиональных пленок, безусловно, выше, поскольку они отличаются от любительских специальными добавками, замедляющими процесс старения. Однако и требования к условиям хранения профессиональных пленок несколько жестче.

Во-вторых, в отличие от бумаги фотопленка имеет срок годности, в течение которого производители гарантируют сохранение ее свойств. По истечении этого времени начинается химический процесс, вызывающий старение фотопленки, которое можно сдержать при соблюдении температурно-влажностного и светового режимов хранения.

Существенный недостаток в работе с фотопленкой – стоимость пленки и оборудования (фотоаппарат или фотокамера, реактивы для проявления и закрепления снимка, проекторы для просмотра готовых материалов) относительно высока.

Магнитная лента

Наверняка вы помните свой старый кассетный магнитофон, на смену которому позже пришли видеоплееры и видеомагнитофоны. Носителем информации в них были сменные кассеты. С развитием информационных технологий магнитную ленту стали использовать и для хранения информации в цифре.

Специальные устройства (стримеры) в цифровом виде записывают на ленту информацию на ленту, которая хранится приблизительно так же, как и на компьютере: в виде файлов. Ранее стримеры широко использовались для хранения резервных копий данных. В быту такие устройства не прижились. Прежде всего это связано со сложностью доступа к информации, записанной на ленту. Сначала ее нужно перемотать до того места, на котором записана нужная информация, после чего подождать, пока данные будут считаны в память компьютера. Не каждому хватит терпения на такие технологические заморочки. Одно время выпускались платы расширения к компьютеру, при помощи которых можно было хранить данные на аудиокассетах, а позже и на видеокассетах, используя совместно с платой, которая вставляется в компьютер, аудио- или видеомагнитофон.

Долгосрочность хранения информации на магнитной ленте в значительной степени зависит от качества самой ленты. К примеру, встречаются низкокачественные ленты, магнитный слой с которых со временем просто осыпается, и, если на видео вы увидите шум, то прочитать цифровые данные с такой ленты будет проблематично. Специальная лента для стримера рассчитана на более длительное хранение информации и более активное использование. Это связано с тем, что при записи на ленту используется специальное кодирование информации, которое позволяет надежно восстановить ее при считывании даже в случае, если некоторые биты информации будут декодированы неверно (пользователь ничего не заметит). Кроме того, при записи может одновременно создаваться несколько копий данных (на ширину пленки могут параллельно писаться несколько дорожек), что также положительно сказывается на длительности хранения.

Проблема, которая потенциально поджидает каждого любителя магнитной пленки, – это быстрое устаревание оборудования. Не факт, что через несколько лет при поломке нынешнего устройства вам удастся найти ему замену, даже просто для того, чтобы считать данные и перенести их на новый носитель. Другой неприятный момент в работе с магнитной пленкой: кассеты необходимо регулярно перематывать. В противном случае соприкасающиеся слои пленки намагничивают друг друга, а значит, магнитная лента не сможет надежно хранить информацию долгое время. В промышленном оборудовании применяются роботизированные комплексы, которые автоматически меняют кассеты по мере их заполнения и периодически перематывают ленты.

Хранить пленки нужно с особой осторожностью, так как магнитные поля, которые нас окружают и абсолютно невидимы, могут повредить информацию на ленте. Так, не допускается использование ферромагнитных металлических стеллажей. При размещении пленки на стальных стеллажах необходимо размагнитить и замкнуть контуры стеллажа: соединение металлических частей стеллажа электропроводом и их эффективное заземление. Не будет лишним напомнить, что магнитная пленка, как и всякий носитель, требует также соблюдения определенного температурно-влажностного режима.

Дискеты

Дискеты – это прошлый век. В буквальном смысле. Они были популярны с 1970-х и до конца 1990-х годов, когда на смену пришли более емкие и удобные CD, DVD и флеш-накопители. Дисководы для 3,5-дюймовых дискет до сих пор можно приобрести в свободной продаже, однако в современные компьютеры их практически не устанавливают. Причина исчезновения очевидна – маленький объем хранимой на дискете информации (1,4 мегабайта) и низкая надежность. К хранению дискет применимы те же требования, что и к магнитным пленкам.

CD/DVD

Низкая стоимость и общедоступность – главные достоинства CD и DVD-дисков. Но, к сожалению, информация на них нередко полностью (или частично) утрачивается уже через два-три года. Это происходит из-за разрушения красящего слоя, вызванного воздействием солнечных лучей и ионизирующим излучением.

Иногда в производстве больших партий используется штамповка, похожая на производство виниловых грампластинок. В отличие от обычных CD и DVD, такие диски могут служить годами.

Производители утверждают, что при соблюдении условий хранения некоторые типы дисков (CD-R, DVD-R) можно использовать от 100 до 200 лет. Однако на практике эти оптимистичные заявления не подтверждаются.

Жесткий диск (HDD)

На сегодняшний день, пожалуй, самое распространенное устройство для хранения информации. Жесткие диски могут быть внутренними (устанавливаются внутрь корпуса) и внешними (присоединяются к устройству с помощью USB-кабеля). В последнем случае жесткий диск обладает размерами, позволяющими носить его в кармане пиджака и подключать его практически к любому компьютеру в USB-разъем.

С каждым годом стоимость единицы объема хранимой информации снижается. Информация хранится на пластинах, находящихся внутри герметичного контейнера и покрытых магнитным материалом. Технология записи похожа на магнитную ленту, а само устройство – на дискету. Основное отличие – в используемых материалах. Кроме того, на жестком диске присутствует, во-первых, электроника, которая может выйти из строя, например, от скачка напряжения в сети, а во-вторых – высокоточная механика. Благодаря тому, что при работе считывающие головки не касаются поверхности диска, поверхность не изнашивается и может служить для хранения информации в течение многих лет.

При неосторожном обращении (падение, тряска во время работы) жесткие диски подвержены выходу из строя. Так, одного резкого встряхивания полностью исправного диска может быть вполне достаточно, чтобы потерять всю записанную на нем информацию без возможности восстановления. При аккуратном обращении диски исправно служат более десяти лет при активном каждодневном использовании. Правда, в последнее время качество оборудования оставляет желать лучшего, так как в погоне за низкой ценой производители экономят на оборудовании и материалах.

Флеш-память (flash memory), флеш-диски (flash drive)

Флеш-накопители – это носители информации, использующие для хранения электрически стираемую энергонезависимую память. Если магнитная лента, дискеты и жесткие диски были придуманы и широко использовались еще на заре развития компьютерной техники, то флеш-память стала популярной относительно недавно. Это объясняется прорывом в области технологий производства микросхем.

Существуют как дорогие твердотельные накопители большого объема, так и бюджетные устройства известные, как флешки и карты памяти. На сегодняшний день они являются, пожалуй, самыми доступными и удобными средствами для каждодневного использования. Карта памяти является полностью электронным устройством и может быть подключена к устройству через кард-ридер. В отличие от них, флеш-диски не требуют дополнительных механизмов для подключения к компьютеру.

Заявленная производителями надежность хранении информации – до десяти лет. В отличие от жестких дисков, флеш-накопители не боятся тряски и падений с небольшой высоты. Они легки, вместительны и имеют высокую емкость, достаточную для того, чтобы записать несколько фильмов или десятки тысяч документов на одно устройство.

При каждодневном использовании флеш-диски довольно часто выходят из строя, например, от статического электричества, которое выводит из строя нежную электронику. Причина может также заключаться в некачественном изготовлении и ошибках, допущенных инженерами при проектировании дешевых устройств, особенно флешек. Последние могут выйти из строя из-за поломки микроконтроллера. В этом случае информация теоретически может быть восстановлена прямо с микросхемы памяти с использованием специального оборудования. Если поврежденной оказалась сама микросхема, то восстановить данные невозможно.

Технологии не стоят на месте. И уже сегодня ученые создают такие носители информации, которые для обывателей кажутся частью научно-фантастических сюжетов. Однако при выборе средства хранения следует руководствоваться не только модными технологическими веяниями, но и здравым смыслом. Если для хранения информации вам достаточно нескольких мобильных гигабайт свободного места (размер стандартной флешки), то нет смысла покупать дорогие жесткие диски гигантского объема только для того, чтобы произвести впечатление на знакомых.

Кроме того, необходимо учитывать затраты как на покупку самого носителя, так и расходы, связанные с записью информации и обслуживанием оборудования (например, как в случае с фотопленкой). Для того чтобы обеспечить надежную сохранность данных, оптимальным решением будет выбор не одного, а нескольких средств хранения, которые смогут прийти на помощь друг другу в случае досадной порчи одного из носителей.

Информатика, кибернетика и программирование

Хранение информации данных не является самостоятельной фазой в информационном процессе а входит в состав фазы обработки. Различают структурированные данные в которых отражаются отдельные факты предметной области это основная форма представления данных в СУБД и неструктурированные произвольные по форме включающие и тексты и графику и прочие данные. Эта форма представления данных широко используется например в Интернеттехнологиях а сами данные предоставляются пользователю в виде отклика поисковыми системами. Организация того или...

PAGE \* MERGEFORMAT 3

Вопрос 2 . Хранение информации.

Хранение информации (данных) не является самостоятельной фазой в информационном процессе, а входит в состав фазы обработки. Однако, в силу важности организации хранения, данный материал вынесен в отдельный раздел.

Различают структурированные данные, в которых отражаются отдельные факты предметной области (это основная форма представления данных в СУБД), и неструктурированные, произвольные по форме, включающие и тексты, и графику, и прочие данные. Эта форма представления данных широко используется, например, в Интернет-технологиях, а сами данные предоставляются пользователю в виде отклика поисковыми системами.

Организация того или иного вида хранения данных (структурированных или неструктурированных) связана с обеспечением доступа к самим данным. Под доступом понимается возможность выделения элемента данных (или множества элементов) среди других элементов по каким-либо признакам с целью выполнения некоторых действий над элементом. При этом под элементом понимается как запись файла (в случае структурированных данных), так и сам файл (в случае неструктурированных данных).

Для данных любого вида доступ осуществляется с помощью специальных данных, которые называются ключевыми (ключами ). Для структурированных данных такие ключи входят в состав записей файлов в качестве отдельных полей записей. Для неструктурированных поисковые слова или выражения входят, как правило, в искомый текст. С помощью ключей выполняется идентификация требуемых элементов в информационном массиве (массиве хранения данных).

Дальнейшее изложение фазы хранения информации относится к структурированным данным.

Модели структурированных данных и технологии их обработки основаны на одном из трех способов организации хранения данных: в виде линейного списка (или табличном), иерархическом (или древовидном), сетевом .

Хранение информации – это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

Основное содержание процесса хранения и накопления информации состоит в создании, записи, пополнении и поддержании информационных массивов и баз данных в активном состоянии.

В результате реализации такого алгоритма, документ, независимо от формы представления, поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где он помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях:

Внешнем;

Концептуальном, (логическом);

Внутреннем;

Физическом.

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе реализации их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском – операцией, предполагающей извлечение хранимой информации.

Хранение и поиск информации являются не только операциями над ней, но и предполагают использование методов осуществления этих операций. Информация запоминается так, чтобы ее можно было отыскать для дальнейшего использования. Возможность поиска закладывается во время организации процесса запоминания. Для этого используют методы маркирования запоминаемой информации, обеспечивающие поиск и последующий доступ к ней. Эти методы применяются для работы с файлами, графическими базами данных и т.д.

Рис. 1 Алгоритм процесса подготовки информации к хранению

Маркер – метка на носителе информации, обозначающая начало или конец данных либо их части (блока).

В современных носителях информации используются маркеры:

Адреса (адресный маркер) – код или физическая метка на дорожке диска, указывающие на начало адреса сектора;

Группы – маркер, указывающий начало или конец группы данных;

Дорожки (начала оборота) – отверстие на нижнем диске пакета магнитных дисков, указывающие физическое начало каждой дорожки пакета.

Защиты – прямоугольный вырез на носителе (картонном пакете, конверте, магнитном диске), разрешающий выполнение любых операций над данными: запись, чтение, обновление, удаление и др.;

Конца файла – метка, используемая для указания окончания считывания последней записи файла;

Ленты (ленточный маркер) – управляющая запись или физическая метка на магнитной ленте, обозначающая признак начала или конца блока данных или файла;

Сегмента – специальная метка, записываемая на магнитной ленте для отделения одного сегмента набора данных от другого сегмента.

Хранение информации в ЭВМ связано как с процессом ее арифметической обработки, так и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Массив – упорядоченное множество данных.

Информационный массив – система хранения информации, включающая представление данных и связей между ними, т.е. принципы их организации.

Хранение информации осуществляется на специальных носителях. Исторически наиболее распространенным носителем информации была бумага, которая, однако, непригодна в обычных (не специальных) условиях для длительного хранения информации. Для ЭВТ по материалу изготовления различают следующие машинные носители: бумажные, металлические, пластмассовые, комбинированные и др.

По принципу воздействия и возможности изменения структуры выделяют магнитные, полупроводниковые, диэлектрические, перфорационные, оптические и др.

По методу считывания различают контактные, магнитные, электрические, оптические. Особое значение при построении информационного обеспечения имеют характеристики доступа к информации, записанной на носителе. Выделяют носители прямого и последовательного доступа. Пригодность носителя для хранения информации оценивается следующими параметрами: временем доступа, емкостью памяти и плотностью записи.

Таким образом можно заключить, что хранение информации представляет процесс передачи информации во времени, связанный с обеспечением неизменности состояния материального носителя.

Хранение информации

Информация, закодированная с помощью естественных и формальных языков, а также информация в форме зрительных и звуковых образов хранится в памяти человека. Однако для долговременного хранения информации, ее накопления и передачи из поколения в поколение используются носители информации .

Материальная природа носителей информации может быть различной: молекулы ДНК, которые хранят генетическую информацию; бумага, на которой хранятся тексты и изображения; магнитная лента, на которой хранится звуковая информация; фото- и кинопленки, на которых хранится графическая информация; микросхемы памяти, магнитные и лазерные диски, на которых хранятся программы и данные в компьютере, и так далее.

По оценкам специалистов, объем информации, фиксируемой на различных носителях, превышает один эксабайт в год (10 18 байт/год). Примерно 80% всей этой информации хранится в цифровой форме на магнитных и оптических носителях и только 20% - на аналоговых носителях (бумага, магнитные ленты, фото- и кинопленки). Если всю записанную в 2000 году информацию распределить на всех жителей планеты, то на каждого человека придется по 250 Мбайт, а для ее хранения потребуется 85 миллионов жестких магнитных дисков по 20 Гбайт.

Информационная емкость носителей информации. Носители информации характеризуются информационной емкостью, то есть количеством информации, которое они могут хранить. Наиболее информационно емкими являются молекулы ДНК, которые имеют очень малый размер и плотно упакованы. Это позволяет хранить огромное количество информации (до 10 21 битов в 1 см 3 ), что дает возможность организму развиваться из одной-единственной клетки, содержащей всю необходимую генетическую информацию.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден. На каждом гибком магнитном диске может храниться книга объемом около 600 страниц, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Надежность и долговременность хранения информации. Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потери информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.

Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные - десятки лет.

Хранение и накопление являются одними из основных действий, осуществляемых над информацией и главным средством обеспечения ее доступности в течение некоторого промежутка времени. В настоящее время определяющим направлением реализации этой операции является концепция базы данных, склада (хранилища) данных.

База данных может быть определена как совокупность взаимосвязанных данных, используемых несколькими пользователями и хранящихся с регулируемой избыточностью. Хранимые данные не зависят от программ пользователей, для модификации и внесения изменений применяется общий управляющий метод.

Банк данных - система, представляющая определенные услуги по хранению и поиску данных определенной группе пользователей по определенной тематике.

Система баз данных - совокупность управляющей системы, прикладного программного обеспечения, базы данных, операционной системы и технических средств, обеспечивающих информационное обслуживание пользователей.

Хранилище данных (ХД - используют также термины Data Warehouse, «склад данных», «информационное хранилище») - это база, хранящая данные, агрегированные по многим измерениям. Основные отличия ХД от БД: агрегирование данных; данные из ХД никогда не удаляются; пополнение ХД происходит на периодической основе; формирование новых агрегатов данных, зависящих от старых - автоматическое; доступ к ХД осуществляется на основе многомерного куба или гиперкуба.

Альтернативой хранилищу данных является концепция витрин данных (Data Mart). Витрины данных - множество тематических БД, содержащих информацию, относящуюся к отдельным информационным аспектам предметной области.

Еще одним важным направлением развития баз данных являются репозитарии. Репозитарий, в упрощенном виде, можно рассматривать просто как базу данных, предназначенную для хранения не пользовательских, а системных данных. Технология репозитариев проистекает из словарей данных, которые по мере обогащения новыми функциями и возможностями приобретали черты инструмента для управления метаданными.

Каждый из участников действия (пользователь, группа пользователей, «физическая память») имеет свое представление об информации

По отношению к пользователям применяют трехуровневое представление для описания предметной области: концептуальное, логическое и внутреннее (физическое).

Концептуальный уровень связан с частным представлением данных группы пользователей в виде внешней схемы, объединяемых общностью используемой информации. Каждый конкретный пользователь работает с частью БД и представляет ее в виде внешней модели. Этот уровень характеризуется разнообразием используемых моделей (модель «сущность-связь», ER-модель, модель Чена), бинарные и инфологические модели, семантические сети).

Логический уровень является обобщенным представлением данных всех пользователей в абстрактной форме. Используются три вида моделей: иерархические, сетевые и реляционные.

Структура базовой информационной технологии.

Определим структуру и состав типовой ИТ. Мы будем называть типовую ИТ базовой , если она ориентирована на определенную область применения. Базовая ИТ создает модели, методы средства решения задач. Базовая ИТ создается на основе базовых (типовых) аппаратно-программных средств. Базовая ИТ подчинена основной цели - решению функциональных задач в своей предметной области (задачи управления, проектирования, научного эксперимента, испытания и т. д.).

На вход базовой ИТ как системы поступает комплекс решаемых задач, для которых должны быть найдены типовые решения с помощью методов и средств, присущих именно ИТ. Рассмотрим использование базовой ИТ на концептуальном, логическом и физическом уровнях.

Концептуальный уровень базовой ИТ - задается идеология автоматизированного решения задач. Типовая последовательность решения задач может быть представлена в виде алгоритма.

Рис. 2 . Концептуальная модель базовой ИТ.

Начальный этап - постановка задачи (ПЗ). Если эта задача автоматизированного управления, то она представляет собой совокупность взаимосвязанных алгоритмов, которые обеспечивают управление. ПЗ - содержательное описание задачи: целевое назначение задачи, экономико-математическая модель и метод ее решения, функциональная и информационная взаимосвязь с другими задачами. Оформляется документально в методических материалах «Постановка задачи и алгоритм решения». На этом этапе очень важна корректность описания с точки зрения критериев.

Следующий этап - формализация задачи (ФЗ). Разрабатывается математическая модель.

Если математическая модель установлена, следующий этап - алгоритмизация задачи (АЗ). Алгоритм - процесс преобразования исходных данных в искомое результат за конечное число шагов.

Реализация алгоритма на основе конкретных вычислительных средств осуществляется на этапе программирования задачи - ПРЗ. Это объемная задача, но она осуществляется как правило на типовых технологиях программирования.

При наличии программы осуществляется РЗ - решение задач - получение конкретных результатов для входных данных и принятых ограничений.

Этап АР - анализ решения. При анализе решения можно уточнить модель формализации задач.

Наиболее сложными, творческими и объемными являются этапы постановки задачи и ее формализации. Понятие первоначальной задачи - это глубокое понимание процессов в предметной области.

В условиях базовой ИТ глобальная задача - это разработка модели предметной области (МПО).

При реализации ИТ часто встречаются с плохо формализуемыми задачами. Тут приходят на помощь экспертные системы. В основу ЭС закладываются знания лучших экспертов в предметной области. Разработчик ЭС собирает все известные способы формализации данной задачи. Пользователь - разработчик данной ИТ - получает варианты решения задач. Это процесс автоматизирования проектирования ИТ.

Логический уровень создания ИТ. Модели базовой ИТ

На логическом уровне устанавливают модели решения задачи и организации информационных процессов. Если известна общая модель управления некой АСУ, в которую будет внедряться базовая ИТ, мы можем представить взаимосвязь моделей базовой ИТ.

Цель базовой ИТ на логическом уровне - построение модели решаемой задачи и ее реализация на основе организации информационных процессов.

Рассмотрим взаимосвязь моделей базовой ИТ на схеме.

Рис. 3 . Логический уровень базовой ИТ. Модель организации информационных процессов.

Модель решения задачи в условиях выбранной базовой ИТ согласуется с моделью организации информационных процессов (МОИП). МОИП включает в себя МОД (модель обработки данных), МО (модель обмена данными), МУПД (модель управления данными), МНД(модель накопления данных), МПЗ (модель представления знаний). Каждая из этих моделей отражает определенные информационные процессы и содержит базы построения частных матмоделей конкретного информационного процесса.

Модель обмена - оценивает вероятностно-временные характеристики процесса обмена с учетом маршрутизации (М), коммутации (К) и передачи (П) информации. В качестве воздействий в этом процессе участвуют: входные (потоки сообщений); мешающие (потоки ошибок), и управляющие (потоки управления). На основании этой модели синтезируют систему обмена данными, то есть выбирают технологию сети, метод оптимальной коммутации, маршрутизации.

Модель накопления данных МНД. Определяет схему информационной базы СИБ, устанавливает логическую организацию информационных массивов ОИМ, задает физическое размещение информационных массивов РИМ.

Информационный массив - основное понятие, основной элемент внутримашинного информационного обеспечения. ИМ - совокупность данных по группе однородных объектов, содержащих одинаковый набор сведений. ИМ могут включать информацию:

  • программы ОС и тестовые программы (обеспечивают работу ЭВМ);
  • прикладные программы (обеспечивают решение набора функциональных задач);
  • библиотека стандартных программ.

Типы информационных массивов:

  • постоянные (формируются до начала работы системы - директивные, справочные, нормативные данные - не изменяемые во времени);
  • промежуточные (возникают как результат предыдущего расчета и основа для следующего);
  • текущие (содержат рабочую информацию о состоянии управляемого объекта);
  • служебные (обслуживают остальные массивы);
  • вспомогательные (возникают при операциях над основными массивами).

По виду носителя ИМ делятся на массивы на машинных (внутренних и внешних) и немашинных носителях.

Особенность ИМ - его структура, способ упорядочивания данных по ключевым признакам. Записи могут упорядочиваться по возрастанию или убыванию значения ключевого признака. В качестве ключевого выбирается наиболее часто встречающийся признак.

Модель обработки данных МОД. Она определяет организацию вычислительных процессов ОВП для решения задач пользователя. Последовательность и процедуры решения вычислительных задач должны быть оптимизированы с точки зрения критериев: объем памяти, ресурсы, числа обращений и т. д. Организация процесса впрямую зависит от предметной области. При разработке базовой ИТ прежде всего следует правильно выбрать ОС. Именно ОС задает реальные возможности по управлению вычислительным процессом.

Структура вычислительного процесса задается числом задач. Очень важными являются требования к моменту запуска и выпуска (выхода результатов) задач. Эти моменты определяют динамику получения результатов, то есть динамику всего процесса управления производством.

Первые ОС были ориентированы на пакетную обработку информации. Этот режим в принципе не пригоден для задач управления большой размерности и оперативности. Переход к системам разделения времени позволил в условиях прерывания отдавать предпочтение приоритетным задачам. Оказалось возможным планировать вычислительный процесс.

Новые возможности для пользователя заложены в виртуальных ОС. Она позволила пользователю иметь неограниченный вычислительный ресурс, не замечая работы соседних пользователей. В условиях распределенной обработки данных возникают новые требования к вычислительному процессу. Требуется не только распределить вычислительный ресурс между пользователями и их вычислительными задачами, но и учесть топологию пользователей.

При создании моделей организации вычислительного процесса (ОВП) используют два возможных подхода: детерминированный и вероятностный. При детерминированном подходе применяется теория расписаний очередности задач при накладываемых ограничениях. К сожалению, в этот удобный метод вмешиваются случайные помехи. Могут возникнуть непредвиденные задачи, требующие срочного решения. Для них выделяются дополнительные интервалы времени. При вероятностном подходе устанавливает средний вычислительный ресурс, среднее время выполнения программы, усредненная производительность вычислительной системы. Усредненные параметры рассчитываются на основании статистических данных и постоянно корректируются.

Если мы склонны к типизации решаемых вычислительных задач для конкретной ИТ, то очень большое значение имеет разработка пакетов прикладных программ (ППП).

Среди моделей обработки данных следует еще упомянуть имитационные модели. С их помощью решаются задачи планирования организации вычислительного процесса.

Модель представления знаний МПЗ. Модели представления знаний являются основой автоматизированного решения задач управления. Модели представления знаний существуют в виде логического Л, алгоритмического А, семантического С, фреймового Ф и интегрального И представлений.

Модель управления данными МУПД. Управление данными - управление процессами накопления, обмена и обработки данных. Накопление данных сейчас происходит в условиях современных бах данных, при этом управляющее воздействие должны обеспечить ввод информации, обновление ее, размещение массивов в БД. Эти функции осуществляет современная СУБД.

С появлением ЭВМ данные накапливались в виде совокупности одинаково построенных записей - файлов. При решении каждой новой задачи создавались новые файлы. Логическая связь между файлами отсутствовала. Возникала проблема целостности данных. Для каждого обращения к файлам создавалась своя программа. Отдельные данные в файлах дублировались. Совершенствование вычислительной техники и одновременно рост объемов информации привели к появлению концепции баз данных. В БД записи взаимосвязаны, могут совместно использоваться для решения все новых задач.

В зависимости от решаемых задач выбираются модели баз данных.

Современное производство решает огромное количество рутинных информационных задач. Но и очень велико количество задач, требующих информацию для принятия решения. Для этого требуется новые подходы к формированию данных, вводу и выводу их, обработке. Эти новые подходы реализуются с помощью новых ИТ, реализующих их взаимную организацию. Этой организацией ведает модель управления данными. Модель базируется на том, что данные обладают относительной стабильностью. Стабильность структуры данных дает возможность строить базы со стабильной структурой. А получаемую информацию отображать в виде переменных значений данных в этой стабильной структуре.

В соответствии с моделью предметной области может быть сформирован класс данных для всех решаемых задач. На логическом уровне предметная БД включает в себя логические записи, их элементы и взаимосвязь между ними.

Сетевая модель является моделью объектов-связей, допускающей только бинарные связи «многие к одному» и использует для описания модель ориентированных графов.

Иерархическая модель является разновидностью сетевой, являющейся совокупностью деревьев (лесом).

Реляционная модель использует представление данных в виде таблиц (реляций), в ее основе лежит математическое понятие теоретико-множественного отношения, она базируется на реляционной алгебре и теории отношений.

Физический (внутренний) уровень связан со способом фактического хранения данных в физической памяти ЭВМ. Во многом определяется конкретным методом управления. Основными компонентами физического уровня являются хранимые записи, объединяемые в блоки; указатели, необходимые для поиска данных; данные переполнения; промежутки между блоками; служебная информация.

По наиболее характерным признакам БД можно классифицировать следующим образом:

по способу хранения информации:

  • интегрированные;
  • распределенные;

по типу пользователя:

  • монопользовательские;
  • многопользовательские;

по характеру использования данных:

  • прикладные;
  • предметные.

В настоящее время при проектировании БД используют два подхода. Первый из них основан на стабильности данных, что обеспечивает наибольшую гибкость и адаптируемость к используемым приложениям. Применение такого подхода целесообразно в тех случаях, когда не предъявляются жесткие требования к эффективности функционирования (объему памяти и продолжительности поиска), существует большое число разнообразных задач с изменяемыми и непредсказуемыми запросами.

Второй подход базируется на стабильности процедур запросов к БД и является предпочтительным при жестких требованиях к эффективности функционирования, особенно это касается быстродействия.

Другим важным аспектом проектирования БД является проблема интеграции и распределения данных. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объема, оказалась несостоятельной. Этот факт, а также увеличение объемов памяти внешних запоминающих устройств при их удешевлении, широкое внедрение сетей передачи данных способствовало внедрению распределенных БД. Распределение данных по месту их использования может осуществляться различными способами:

  1. Копируемые данные. Одинаковые копии данных хранятся в различных местах использования, так как это дешевле передачи данных. Модификация данных контролируется централизованно;
  2. Подмножество данных. Группы данных, совместимые с исходной базой данных, хранятся отдельно для местной обработки;
  3. Реорганизованные данные. Данные в системе интегрируются при передаче на более высокий уровень;
  4. Секционированные данные. На различных объектах используются одинаковые структуры, но хранятся разные данные;
  5. Данные с отдельной подсхемой. На различных объектах используются различные структуры данных, объединяемые в интегрированную систему;
  6. Несовместимые данные. Независимые базы данных, спроектированные без координации, требующие объединения.

Важное влияние на процесс создания БД оказывает внутреннее содержание информации. Существует два направления:

  • прикладные БД, ориентированные на конкретные приложения, например, может быть создана БД для учета и контроля поступления материалов;
  • предметные БД, ориентированные на конкретный класс данных, например, предметная БД «Материалы», которая может быть использована для различных приложений.

Конкретная реализация системы баз данных с одной стороны определяется спецификой данных предметной области, отраженной в концептуальной модели, а с другой стороны типом конкретной СУБД (МБД), устанавливающей логическую и физическую организацию.

Для работы с БД используется специальный обобщенный инструментарий в виде СУБД (МБД), предназначенный для управления БД и обеспечения интерфейса пользователя.

Основные стандарты СУБД:

  • независимость данных на концептуальном, логическом, физическом уровнях;
  • универсальность (по отношению к концептуальному и логическому уровням, типу ЭВМ);
  • совместимость, неизбыточность;
  • безопасность и целостность данных;
  • актуальность и управляемость.

Существуют два основных направления реализации СУБД: программное и аппаратное.

Программная реализация (в дальнейшем СУБД) представляет собой набор программных модулей, работает под управлением конкретной ОС и выполняет следующие функции:

  • описание данных на концептуальном и логическом уровнях;
  • загрузку данных;
  • хранение данных;
  • поиск и ответ на запрос (транзакцию);
  • внесение изменений;
  • обеспечение безопасности и целостности.

Обеспечивает пользователя следующими языковыми средствами:

  • языком описания данных (ЯОД);
  • языком манипулирования данными (ЯМД);
  • прикладным (встроенным) языком данных (ПЯД, ВЯД).

Аппаратная реализация предусматривает использование так называемых машин баз данных (МБД). Их появление вызвано возросшими объемами информации и требованиями к скорости доступа. Слово «машина» в термине МБД означает вспомогательный периферийный процессор. Термин «компьютер БД» - автономный процессор баз данных или процессор, поддерживающий СУБД.

Основные направления МБД:

  • параллельная обработка;
  • распределенная логика;
  • ассоциативные ЗУ;
  • конвейерные ЗУ;
  • фильтры данных и др.

Совокупность процедур проектирования БД можно объединить в четыре этапа. На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Эти требования документируются в форме, доступной конечному пользователю и проектировщику БД. Обычно при этом используется методика интервьюирования персонала различных уровней управления.

Этап концептуального проектирования заключается в описании и синтезе информационных требований пользователей в первоначальный проект БД. Результатом этого этапа является высокоуровневое представление информационных требований пользователей на основе различных подходов.

В процессе логического проектирования высокоуровневое представление данных преобразуется в структуре используемой СУБД. Полученная логическая структура БД может быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объем данных в каждом приложении, общий объем данных и т.д.). На основе этих оценок логическая структура может быть усовершенствована с целью достижения большей эффективности.

На этапе физического проектирования решаются вопросы, связанные с производительностью системы, определяются структуры хранения данных и методы доступа.

Весь процесс проектирования БД является итеративным, при этом каждый этап рассматривается как совокупность итеративных процедур, в результате выполнения которых получают соответствующую модель.

Взаимодействие между этапами проектирования и словарной системой необходимо рассматривать отдельно. Процедуры проектирования могут использоваться независимо в случае отсутствия словарной системы. Сама словарная система может рассматриваться как элемент автоматизации проектирования.

Этап расчленения БД связан с разбиением ее на разделы и синтезом различных приложений на основе модели. Основными факторами, определяющими методику расчленения, являются: размер каждого раздела (допустимые размеры); модели и частоты использования приложений; структурная совместимость; факторы производительности БД. Связь между разделом БД и приложениями характеризуется идентификатором типа приложения, идентификатором узла сети, частотой использования приложения и его моделью.

Модели приложений могут быть классифицированы следующим образом:

  1. Приложения, использующие единственный файл.
  2. Приложения, использующие несколько файлов, в том числе:

Допускающие независимую параллельную обработку;

Допускающие синхронизированную обработку.

Сложность реализации этапа размещения БД определяется многовариантностью. Поэтому на практике рекомендуется в первую очередь рассмотреть возможность использования определенных допущений, упрощающих функции СУБД, например, допустимость временного рассогласования БД, осуществление процедуры обновления БД из одного узла и др. Такие допущения оказывают большое влияние на выбор СУБД и рассматриваемую фазу проектирования.

Средства проектирования и оценочные критерии используются на всех стадиях разработки. Любой метод проектирования (аналитический, эвристический, процедурный), реализованный в виде программы, становится инструментальным средством проектирования, практически не подверженным влиянию стиля проектирования.

В настоящее время неопределенность при выборе критериев является наиболее слабым местом в проектировании БД. Это связано с трудностью описания и идентификации бесконечного числа альтернативных решений. При этом следует иметь в виду, что существует много признаков оптимальности, являющихся неизмеримыми, им трудно дать количественную оценку или представить их в виде целевой функции. Поэтому оценочные критерии принято делить на количественные и качественные. Наиболее часто используемые критерии оценки БД, сгруппированные в такие категории, представлены ниже.

Количественные критерии: время, необходимое для ответа на вопрос, стоимость модификации, стоимость памяти, время на создание, стоимость на реорганизацию.

Качественные критерии: гибкость, адаптивность, доступность для новых пользователей, совместимость с другими системами, возможность конвертирования в другую вычислительную среду, возможность восстановления, возможность распределения и расширения.

Трудность в оценке проектных решений связана также с различной чувствительностью и временем действия критериев. Например, критерий эффективности обычно является краткосрочным и чрезвычайно чувствительным к проводимым изменениям, а такие понятия, как адаптируемость и конвертируемость, проявляются на длительных временных интервалах и менее чувствительны к воздействию внешней среды.

Предназначение склада данных - информационная поддержка принятия решений, а не оперативная обработка данных. Потому база данных и склад данных не являются одинаковыми понятиями.

Основные функции репозитариев:

  • парадигма включения/выключения и некоторые формальные процедуры для объектов;
  • поддержка множественных версий объектов и процедуры управления конфигурациями для объектов;
  • оповещение инструментальных и рабочих систем об интересующих их событиях;
  • управление контекстом и разные способы обзора объектов репозитария;
  • определение потоков работ.

Рассмотрим кратко основные направления научных исследований в области баз данных:

  • развитие теории реляционных баз данных;
  • моделирование данных и разработка конкретных моделей разнообразного назначения;
  • отображение моделей данных, направленных на создание методов их преобразования и конструирования коммутативных отображений, разработку архитектурных аспектов отображения моделей данных и спецификаций определения отображений для конкретных моделей данных;
  • создание СУБД с мультимодельным внешним уровнем, обеспечивающих возможности отображения широко распространенных моделей;
  • разработка, выбор и оценка методов доступа;
  • создание самоописываемых баз данных, позволяющих применить единые методы доступа для данных и метаданных;
  • управление конкурентным доступом;
  • развитие системы программирования баз данных и знаний, которые обеспечивали бы единую эффективную среду как для разработки приложений, так и для управления данными;
  • совершенствование машины баз данных;
  • разработка дедуктивных баз данных, основанных на применении аппарата математической логики и средств логического программирования, а также пространственно-временных баз данных;
  • интеграция неоднородных информационных ресурсов.

А также другие работы, которые могут Вас заинтересовать

46498. Эхинококкоз печени. Клиника, диагностика, методы хирургического лечение 17.71 KB
Эхинококкоз печени. При перкуссии расширения границ печени.Периоды развития: латентный продромальных явлений прогрессивное увеличение печени период осложнений.
46499. Анализ прибыли предприятия 17.72 KB
Прибыль предприятия характеризует превышение если наоборот то убыток выручки над расходами является главным показателем эффективности деятельности и отражает цель предпринимательства. В зависимости способа вычисления и направлений распределения различают такие основные виды прибыли предприятия: валовую балансовую прибыль операционную прибыль прибыль от обычной деятельности и прибыль после налогообложения чистую прибыль.Валовая балансовая прибыль Gross Profit разность между чистым доходом от реализации продукции и себестоимостью...
46500. Понятие и методы калькуляции затрат 17.86 KB
Калькуляция служит основой для определения средних издержек производства и установления себестоимости продукции. Методы калькуляции это методы расчёта издержек производства себестоимости продукции объёма незавершённого производства основанные на калькуляции затрат. Попередельный метод калькуляции это метод исчисления себестоимости применяемый на предприятиях где исходный материал в процессе производства проходит ряд переделов или где из одних исходных материалов в одном технологическом процессе получают различные виды продукции....
46501. Техническое диагностирование. Этапы комплексной диагностики участков МТ. 17.87 KB
Основными задачами контроля и диагностики МТ являются определение технического состояния на основе комплексного мониторинга в процессе создания и эксплуатации системы оценка и прогнозирование динамики технического состояния с целью обеспечения надежной и безопасной эксплуатации газотранспортной системы. Контроль и мониторинг технического состояния трубопроводных систем включает: получение информации в предэксплуатационный период ранняя диагностика из проектных материалов включая материалы изысканий лабораторных исследований грунтов...
46502. Диаграммы UML 17.91 KB
Диаграммы UML. UML определяет следующие диаграммы: 1. Диаграммы применения use cse Или диаграммы вариантов использования Представляют собой граф из действующих лиц ctors и их взаимодействие с системой представленное сценариями применения. Диаграммы классов Cодержат набор статических декларативных элементов как например классы типы их связи объединенные в граф.
46503. Обеспечение электробезопасности техническими способами и СЗ 17.91 KB
При случайном прикосновении для обеспечения электробезопасности применяют: защитные оболочки защитные ограждения временные или стационарные безопасное расположение токоведущих частей изоляцию этих частей и РМ малое U защитное отключение предупредительную сигнализацию блокировку и знаки безопасности; а при прикосновении к нетоковедущим металлическим частям защитное заземление зануление выравнивание потенциала защитное отключение изоляцию нетоковедущих частей электроразделение сети малое U контроль электроизоляции и СИЗ....
46504. Формы производственной деятельности фирмы 17.98 KB
Различают три основные формы организации производства: Специализация Кооперирование Комбинирование Специализация производства Специализация производства выражается в том что каждое производство ограничивается изготовлением определённого вида конструктивной и технологически однородной продукции. Соответственно этому различают четыре вида специализации предприятий: предметную; подетальную иногда называют узловая; технологическую; по услугам вспомогательного производства. Подетальная специализация характеризуется...
46505. Природа грамматического значения: общая характеристика, отношение к лексическому значению, функциональный статус 18.04 KB
Природа грамматического значения: общая характеристика отношение к лексическому значению функциональный статус. Большинство слов обладает двумя значениями: лексическим и грамматическим. В области морфологии это общие значения слов как частей речи напр. значения предметности у существительных процессуальное у глаголов а также частные значения словоформ и слов в целом противопоставляемые друг другу в рамках морфологических категорий например значения того или иного времени лица числа рода.
46506. Поверхностное упрочнение детали. Выбор метода поверхностного упрочнения 18.07 KB
При обработке поверхности шлифованием и полированием устраняющей неровности которые служат концентраторами напряжений повышается усталостная прочность детали. Назначение метода упрочняющей обработки зависит от условий работы детали в машине и ее технологических особенностей. Деталь помещают внутри спирали индуктора или под проводником по которому пропускается переменный ток большой частоты; он вызывает появление вихревых токов на поверхности детали и быстро разогревает слой с наибольшей плотностью индуцированного тока.

Когда информации, окружающей человека, стало очень много, и он оказался не в силах ее запомнить, возникла письменность. Со временем она совершенствовалась и превратилась в неотъемлемую часть повседневной жизни человека. Однако большое количество бумажных носителей затрудняет быстрый поиск нужной информации, а с появлением цифровой информации и средств для ее преобразования и хранения появилась возможность по-другому посмотреть на данную проблему. Цифровая информация имеет ряд преимуществ, связанных с устойчивостью к помехам при передаче и более продолжительным

Хранение информации - это один из главных с которым неразрывно связано понятие устройства хранения информации, или запоминающего устройства. Разные устройства могут использовать различные способы хранения информации. Совокупность таких устройств называют памятью. Чаще понятие «хранение информации» связывают с компьютерной техникой.

Память компьютера бывает внутренней и внешней. К внутренней памяти относятся устройства, обеспечивающие работоспособность самой вычислительной системы (компьютера). Например, оперативная Большинство запоминающих устройств, известных рядовому пользователю, таких как винчестер, USB-флеш, компакт-диск, относятся к

До недавнего времени это было единственным, что могла предложить нам компьютерная индустрия. Теперь у любого есть возможность хранить свою личную информацию прямо в сети Интернет, причем, даже не тратя на это деньги.

С одной стороны, это очень удобно, так как с любого устройства, имеющего можно получить доступ и просмотреть необходимую информацию. Таким образом, исключаются случаи, когда флешка с информацией забыта дома, как раз в тот день, когда она была очень нужна на работе.

Хранение информации сопровождается одним неприятным моментом, связанным с ее порчей, потерей или Любой опытный пользователь знает несколько приемов, как обезопасить свою информацию от потерь. Например, не следует хранить ценную информацию на винчестере, так как велика вероятность «подхватить» вирус, который все уничтожит. Также можно дублировать важную информацию сразу на несколько носителей.

Такую информацию обычно хранят на съемных запоминающих устройствах, для которых создаются определенные условия хранения. Но существует еще один способ, обеспечивающий надежное хранение информации.

Это использование «облачных» Интернет-сервисов, в таком случае информация пользователя хранится на распределенных серверах сети Интернет, а доступ к ней осуществляется посредством логина и пароля. У такой технологии союзников и противников примерно поровну. Некоторые вообще не доверяют глобальной сети свои личные файлы, а другие, наоборот, видят в этом будущее.

В современном мире, особенно в крупных городах, где доступ к глобальной сети есть повсеместно, такое хранение информации выглядит предпочтительным. Не требуется покупать, обслуживать и дрожать над сохранностью фотографий или видеоархива.

Вот только что будет, если Интернет-соединение вдруг оборвется и пользователь не сможет в нужное время получить доступ к своей информации?

Статьи по теме: