Для нужен протокол tcp ip. Что такое протокол TCP-IP

Когда статья начинала формироваться, планировалось уложиться в одну, но к завершению, размеры статьи стали неподъемные, было решено разделить статью на две: теория сетей и работа сетевой подсистемы в линукс. Ну что ж, начнем с теории...

Стек протоколов TCP/IP

Собственно, что есть сеть ? Сеть - это более 2х компьютеров, объединенных между собой какими-то проводами каналами связи, в более сложном примере - каким-то сетевым оборудованием и обменивающиеся между собой информацией по определенным правилам. Эти правила "диктуются" стеком протоколов TCP/IP.

Transmission Control Protocol/Internet Protocol (Стек протоколов TCP/IP) - если сказать простым языком, это набор взаимодействующих протоколов разных уровней (можно дополнить, что каждый уровень взаимодействует с соседним, то есть состыковывается, поэтому и стек , имхо, так проще понять), согласно которым происходит обмен данными в сети. Каждый протокол - это набор правил, согласно которым происходит обмен данными. Итого, стек протоколов TCP/IP - это набор наборов правил Тут может возникнуть резонный вопрос: а зачем же иметь много протоколов? Неужели нельзя обмениваться всем по одному протоколу?

Все дело в том, что каждый протокол описывает строго отведенные ему правила. Кроме того, протоколы разделены по уровням функциональности, что позволяет работе сетевого оборудования и программного обеспечения становится гораздо проще, прозрачнее и выполнять "свой" круг задач. Для разделения данного набора протоколов по уровням была разработана модель сетевого взаимодействия OSI (англ. Open Systems Interconnection Basic Reference Model, 1978 г., она же - базовая эталонная модель взаимодействия открытых систем). Модель OSI состоит из семи различных уровней. Уровень отвечает за отдельный участок в работе коммуникационных систем, не зависит от рядом стоящих уровней – он только предоставляет определённые услуги. Каждый уровень выполняет свою задачу в соответствии с набором правил, называемым протоколом. Проиллюстрировать работу модели OSI можно следующим рисунком: Как передаются данные?

Из рисунка видно, что существует 7 уровней сетевого взаимодействия , которые делятся на: прикладной, представлений, сеансовый, транспортный, сетевой, канальный, физический . Каждый из уровней содержит свой набор протоколов. Список протоколов по уровням взаимодействия хорошо представлен в Википедии:

Сам стек протоколов TCP/IP развивался параллельно с принятием модели OSI и "не пересекался" с ней, в результате получилось небольшое разногласие в несоответствии стека протоколов и уровней модели OSI. Обычно, в стеке TCP/IP верхние 3 уровня (прикладной, представления и сеансовый ) модели OSI объединяют в один - прикладной . Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP относительно модели OSI можно представить так:

Данную модель сетевого взаимодействия еще называют модель DOD (от бурж. Department of Defense - Министерство обороны США). Итак, общее представление о сетевом взаимодействии рассмотрели. Для более глубокого понимания сути вопроса, могу посоветовать скачать и почитать книгу (Вито Амато "Основы организации сетей Cisco Т1 и Т2" ), ниже.

Адресация

В сети, построенной на стеке протоколов TCP/IP каждому хосту (компьютеру или устройству подключенному к сети) присвоен представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. В общем случае, IP-адрес делиться на две части : адрес сети (подсети) и адрес хоста :

Как видно из иллюстрации, есть такое понятие как сеть и подсеть . Думаю, что из значений слов понятно, что IP адреса делятся на сети, а сети в свою очередь делятся на подсЕти с помощью маски подсетИ (корректнее будет сказать: адрес хоста может быть разбит на подсЕти ). Изначально, все IP адреса были поделены на определенные группы (классы адресов/сети). И существовала классовая адресация, согласно которой сети делились на строго определенные изолированные сети:

Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была вытеснена CIDR (бесклассовой адресацией), при которой количество адресов в сети определяется маской подсети.

Существует так же классификация IP адресов, как "частные" и "публичные". Под частные (они же локальные сети) сети зарезервированы следующие диапазоны адресов:

  • 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 или 10/8),
  • 172.16.0.0 - 172.31.255.255 (172.16.0.0/12 или 172.16/12),
  • 192.168.0.0 - 192.168.255.255 (192.168.0.0/16 или 192.168/16).
  • 127.0.0.0 - 127.255.255.255 зарезервировано для петлевых интерфейсов (не используется для обмена между узлами сети), т.н. localhost

Кроме адреса хоста в сети TCP/IP есть такое понятие как порт. Порт является числовой характеристикой какого-то системного ресурса. Порт выделяется приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе c другими приложениями на этом же хосте). С программной точки зрения, порт есть область памяти, которая контролируется каким-либо сервисом.

Для каждого из протоколов TCP и UDP стандарт определяет возможность одновременного выделения на хосте до 65536 уникальных портов, идентифицирующихся номерами от 0 до 65535. Соответствие номера порта и службы, использующей этот номер можно посмотреть в файле /etc/services или на сайте http://www.iana.org/assignments/port-numbers. Весь диапазон портов делиться на 3 группы:

  • 0 до 1023, называемые привилегированными или зарезервированными (используются для системных и некоторых популярных программ)
  • 1024 - 49151 называются зарегистрированными портами.
  • 49151 - 65535 называются динамическими портами.

IP протокол , как видно из иллюстраций находится ниже TCP и UDP в иерархии протоколов и отвечает за передачу и маршрутизацию информации в сети. Для этого, протокол IP заключает каждый блок информации (пакет TCP или UDP) в другой пакет - IP пакет или дейтаграмма IP, который хранит заголовок о источнике, получателе и маршруте.

Если провести аналогию с реальным миром, сеть TCP/IP - это город. Названия улиц и проулков - это сети и подсети. Номера строений - это адреса хостов. В строениях, номера кабинетов/квартир - это порты. Точнее, порты - это почтовые ящики, в которые ожидают прихода корреспонденции получатели (службы). Соответственно, номера портов кабинетов 1,2 и т.п. обычно отдаются директорам и руководителям, как привилегированным, а рядовым сотрудникам достаются номера кабинетов с большими цифрами. При отправке и доставке корреспонденции, информация упаковывается в конверты (ip-пакеты ), на которых указывается адрес отправителя (ip и порт ) и адрес получателя (ip и порт ). Простым языком как-то так...

Следует отметить, что протокол IP не имеет представления о портах, за интерпретацию портов отвечает TCP и UDP, по аналогии TCP и UDP не обрабатывают IP-адреса.

Для того чтобы не запоминать нечитаемые наборы цифр в виде IP-адресов, а указывать имя машины в виде человекопонятного имени "придумана" такая служба как DNS (Domain Name Service) , которая заботится о преобразовании имен хостов в IP адрес и представляет собой огромную распределенную базу данных. Об этой службе я обязательно напишу в будущих постах, а пока нам достаточно знать, что для корректного преобразования имен в адреса на машине должен быть запущен демон named или система должна быть настроена на использование службы DNS провайдера.

Маршрутизация

Давайте рассмотрим (на иллюстрации) пример инфраструктуры с несколькими подсетями. Может возникнуть вопрос, а как же один компьютер соединиться с другим? Откуда он знает, куда посылать пакеты?

Для разрешения этого вопроса, сети между собой соединены шлюзами (маршрутизаторами ). Шлюз - это тот же хост, но имеющий соединение с двумя и более сетями, который может передавать информацию между сетями и направлять пакеты в другую сеть. На рисунке роль шлюза выполняет pineapple и papaya , имеющих по 2 интерфейса, подключенные к разным сетям.

Чтобы определить маршрут передачи пакетов , IP использует сетевую часть адреса (маску подсети ). Для определения маршрута, на каждой машине в сети имеется таблица маршрутизации (routing table), которая хранит список сетей и шлюзов для этих сетей. IP "просматривает" сетевую часть адреса назначения в проходящем пакете и если для этой сети есть запись в таблице маршрутизации, то пакет отправляется на соответствующий шлюз.

В Linux ядро операционной системы хранит таблицу маршрутизации в файле /proc/net/route . Просмотреть текущую таблицу маршрутизации можно командой netstat -rn (r - routing table, n - не преобразовывать IP в имена) или route . Первая колонка вывода команды netstat -rn (Destination - назначение) содержит адреса сетей (хостов) назначения . При этом, при указании сети, адрес обычно заканчивается на ноль. Вторая колонка (Gateway) - адрес шлюза для указанного в первой колонке хоста/сети. Третья колонка (Genmask) - маска подсети, для которой работает данный маршрут. Колонка Flags дает информацию об адресе назначения (U - маршрут работает (Up), N - маршрут для сети (network), H - маршрут для хоста и т.п.). Колонка MSS показывает число байтов, которое может быть отправлено за 1 раз, Window - количество фреймов, которое может быть отправлено до получения подтверждения, irtt - статистика использования маршрута, Iface - указывает сетевой интерфейс, используемый для маршрута (eth0, eth1 и т.п.)

Как видно в примере ниже, первая запись (строка) указана для сети 128.17.75, все пакеты для данной сети будут отправлены на шлюз 128.17.75.20, который является IP адресом самого хоста. Вторая запись - это маршрут по умолчанию , который применяется ко всем пакетам, посылаемым в сети, не указанные в данной таблице маршрутизации. Здесь маршрут лежит через хост papaya (IP 128.17.75.98), который можно считать дверью во внешний мир. Данный маршрут должен быть прописан на всех машинах сети 128.17.75, которые должны иметь доступ к другим сетям. Третья запись создана для петлевого интерфейса . Данный адрес используется, если машине необходимо подключиться к самой себе по протоколу TCP/IP. Последняя запись в таблице маршрутизации сделана для IP 128.17.75.20 и направляется на интерфейс lo, т.о. при подключении машины к самой себе на адрес 128.17.75.20, все пакеты будут посылаться на интерфейс 127.0.0.1.

Если хост eggplant пожелает послать пакет хосту zucchini , (соответственно, в пакете будет указан отправитель - 128.17.75.20 и получатель - 128.17.75.37), протокол IP определит на основании таблицы маршрутизации, что оба хоста принадлежат одной сети и пошлет пакет прямо в сеть, где zucchini его получит. Если более подробно сказать.. сетевая карта широковещательно кричит ARP-запросом "Кто такой IP 128.17.75.37, это кричит 128.17.75.20?" все машины, получившие данное послание - игнорируют его, а хост с адресом 128.17.75.37 отвечает "Это я и мой MAC - адрес такой-то...", далее происходит соединение и обмен данными на основе arp таблиц , в которых занесено соответствие IP-MAC адресов. "Кричит", то есть этот пакет посылается всем хостам, это происходит потому что, MAC-адрес получателя указан широковещательный адрес (FF:FF:FF:FF:FF:FF). Такие пакеты получают все хосты сети.

Пример таблицы маршрутизации для хоста eggplant :

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.20 255.255.255.0 UN 1500 0 0 eth0 default 128.17.75.98 0.0.0.0 UGN 1500 0 0 eth0 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.20 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Давайте рассмотрим ситуацию, когда хост eggplant хочет послать пакет хосту, например, pear или еще дальше?.. В таком случае, получатель пакета будет - 128.17.112.21, протокол IP попытается найти в таблице маршрутизации маршрут для сети 128.17.112, но данного маршрута в таблице нет, по этому будет выбран маршрут по умолчанию , шлюзом которого является papaya (128.17.75.98). Получив пакет, papaya отыщет адрес назначения в своей таблице маршрутизации:

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.98 255.255.255.0 UN 1500 0 0 eth0 128.17.112.0 128.17.112.3 255.255.255.0 UN 1500 0 0 eth1 default 128.17.112.40 0.0.0.0 UGN 1500 0 0 eth1 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Из примера видно, что papaya подключена к двум сетям 128.17.75, через устройство eth0 и 128.17.112 через устройство eth1 . Маршрут по умолчанию , через хост pineapple , который в свою очередь, является шлюзом во внешнюю сеть.

Соответственно, получив пакет для pear , маршрутизатор papaya увидит, что адрес назначения принадлежит сети 128.17.112 и направит пакет в соответствии со второй записью в таблице маршрутизации.

Таким образом, пакеты передаются от маршрутизатора к маршрутизатору, пока не достигнут адреса назначения.

Стоит отметить, что в данных примерах маршруты

128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Не стандартные. И в современном linux вы такого не увидите.

Резюме

В данной статье я постарался как можно коротко и понятно описать основные понятия взаимодействия сетевой инфраструктуры на примере нескольких взаимосвязанных сетей, в следующей части я опишу работу сети в операционной системе Linux. Буду рад Вашим комментариям и дополнениям.

Серверы, которые реализуют эти протоколы в корпоративной сети, предоставляют клиенту IP-адрес, шлюз, маску сети, серверы имен и даже принтер. Пользователям не обязательно конфигурировать свои хосты вручную для того, чтобы использовать сеть.

Операционная система QNX Neutrino реализует еще один протокол автоматического конфигурирования под названием AutoIP, который является проектом комитета IETF по автоматической настройке. Этот протокол используется в небольших сетях для назначения хостам IP-адресов, локальных для канала (link-local ). Протокол AutoIP самостоятельно определяет IP-адрес, локальный для канала, используя схему согласования с другими хостами и не обращаясь к центральному серверу.

Использование протокола PPPoE

Сокращение PPPoE расшифровывается как "Point -to -Point Protocol over Ethernet" (протокол соединения "точка-точка" через среду Ethernet). Этот протокол инкапсулирует данные для передачи через сеть Ethernet с мостовой топологией.

PPPoE представляет собой спецификацию подключения пользователей сети Ethernet к Интернету через широкополосное соединение, например, выделенную цифровую абонентскую линию, беспроводное устройство или кабельный модем. Использование протокола PPPoE и широкополосного модема обеспечивает пользователям локальной компьютерной сети индивидуальный аутентифицированный доступ к высокоскоростным сетям передачи данных.

Протокол PPPoE объединяет технологию Ethernet с протоколом PPP, что позволяет эффективно создавать отдельное соединение с удаленным сервером для каждого пользователя. Управление доступом, учет соединений и выбор поставщика услуг определяется для пользователей, а не для узлов сети. Преимущество этого подхода заключается в том, что ни телефонная компания, ни поставщик услуг Интернета не должен обеспечивать для этого какую-либо специальную поддержку.

В отличие от коммутируемых соединений, соединения через цифровую абонентскую линию и кабельный модем всегда активны. Поскольку физическое соединение с удаленным поставщиком услуг совместно используется несколькими пользователями, необходим метод учета, который регистрирует отправителей и адресатов трафика, а также производит начисления пользователям. Протокол PPPoE позволяет пользователю и удаленному узлу, которые участвуют в сеансе связи, узнавать сетевые адреса друг друга во время начального обмена, который называется обнаружением (discovery ). После того как сеанс между отдельным пользователем и удаленным узлом (например, поставщиком услуг Интернета) установлен, за этим сеансом можно вести наблюдение для того, чтобы производить начисления. Во многих домах, гостиницах и корпорациях общий доступ к Интернету предоставляется через цифровые абонентские линии с использованием технологии Ethernet и протокола PPPoE.

Соединение через протокол PPPoE состоит из клиента и сервера. Клиент и сервер работают с использованием любого интерфейса, который близок к спецификациям Ethernet. Этот интерфейс применяется для выдачи клиентам IP-адресов с привязкой этих IP-адресов к пользователям и, по желанию, к рабочим станциям, вместо аутентификации на основе только рабочей станции. Сервер PPPoE создает соединение "точка-точка" для каждого клиента.

Установка сеанса PPPoE

Для того чтобы создать сеанс PPPoE, следует воспользоваться сервисом pppoed . Модуль io-pkt-* п редоставляет службы протокола PPPoE. Сначала необходимо запустить io-pkt-* с подходящим драйвером . Пример :

Если вкратце, то это набор правил, которые регулируют «общение» компьютеров между собой по сети. Их существует около десятка, и каждый из них определяет правила передачи отдельного типа данных. Но для удобства в обращении их все объединяют в так называемый «стек», называя его именем самого важного протокола - протокола TCP/IP (Transmission Control Protocol и Internet Protocol). Слово ­­«стек» подразумевает, что все эти протоколы представляют собой как бы «стопку протоколов», в которой протокол верхнего уровня не может функционировать без протокола нижнего уровня.

Стек TCP/IP включает 4 уровня:

1. Прикладной - протоколы HTTP, RTP, FTP, DNS. Самый верхний уровень; отвечает за работу прикладных приложений, например почтовых сервисов, отображение данных в браузере и прочее.

2. Транспортный - протоколы TCP, UDP, SCTP, DCCP, RIP. Данный уровень протоколов обеспечивает правильное взаимодействие компьютеров между собой и является проводником данных между разными участниками сети.

3. Сетевой - протокол IP. Этот уровень обеспечивает идентификацию компьютеров в сети, раздавая каждому из них уникальный цифровой адрес.

4. Канальный - протоколы Ethernet, IEEE 802.11, Wireless Ethernet. Самый низкий уровень; он взаимодействует с физическим оборудованием, описывает среду передачи даннных и ее характеристики.

Следовательно, для отображения этой статьи ваш компьютер использует стек протоколов «HTTP - TCP - IP - Ethernet».

Как передается информация по интернету

Каждый компьютер в сети называется хостом и с помощью одноименного протокола получает уникальный IP-адрес. Этот адрес записывается в следующей форме: четыре числа от 0 до 255, разделенных точкой, например, 195.19.20.203. Для успешного обмена информацией по сети IP-адрес также должен включать номер порта. Поскольку информацией обмениваются не сами компьютеры, а программы, каждый тип программы должен также иметь собственный адрес, который и отображается в номере порта. Например, порт 21 отвечает за работу FTP, порт 80 - за работу HTTP. Общее количество портов у компьютера ограничено и равно 65536 с нумерацией от 0 до 65535. Номера портов от 0 до 1023 зарезервированы серверными приложениями, а нишу портов с 1024 по 65535 занимают клиентские порты, которыми программы вольны распоряжаться как угодно. «Клиентские порты» назначаются динамически.

Комбинация IP-адреса и номера порта называется «сокет» . В нем значения адреса и порта разделяются двоеточием, например, 195.19.20.203:110

Таким образом, чтобы удаленный компьютер с IP 195.19.20.203 получил электронную почту, нужно всего лишь доставить данные на его порт 110. А, поскольку, этот порт денно и нощно «слушает» протокол POP3 , который отвечает за прием электронных писем, значит дальнейшее — «дело техники».

Все данные по сети для удобства разбиваются на пакеты. Пакет - это файл размером 1-1,5 Мб, который содержит адресные данные отправителя и получателя, передаваемую информацию, плюс служебные данные. Разбиение файлов на пакеты позволяет намного снизить нагрузку на сеть, т.к. путь каждого из них от отправителя к получателю не обязательно будет идентичным. Если в одном месте в сети образуется «пробка», пакеты смогут ее оминуть, используя другие пути сообщения. Такая технология позволяет максимально эффективно использовать интернет: если какая-то транспортная часть его обрушится, информация сможет и дальше передаваться, но уже по другим путям. Когда пакеты достигают целевой компьютер, он начинает собирать их обратно в цельный файл, используя служебную информацию, которую они содержат. Весь процесс можно сравнить с неким большим паззлом, который, в зависимости от размеров передаваемого файла, может достигать воистину огромных размеров.

Как уже было сказано ранее, IP-протокол выдает каждому участнику сети, в том числе, сайтам уникальный числовой адрес. Однако запомнить миллионы IP-адресов никакому человеку не под силу! Поэтому был создан сервис доменных имен DNS (Domain Name System), который занимается тем, что переводит цифровые IP-адреса в буквенно-цифровые имена, которые гораздо легче запомнить. Например, вместо того, чтобы набирать каждый раз ужасное число 5.9.205.233, можно набрать в адресной строке браузера www.сайт.

Что же происходит, когда мы набираем в браузере адрес искомого сайта? С нашего компьютера отправляется пакет с запросом DNS-серверу на порт 53. Этот порт зарезервирован службой DNS, которая, обработав наш запрос, возвращает IP-адрес, соответствующий буквенно-цифровому имени сайта. После этого наш компьютер соединяется с сокетом 5.9.205.233:80 компьютера 5.9.205.233, на котором расположен HTTP-протокол, отвечающий за отображение сайтов в браузере, и посылает пакет с запросом на получение страницы www.сайт. Нам нужно установить соединение именно на 80-й порт, поскольку именно он соответствует Веб-серверу. Можно, при большом желании, указать 80-й порт и прямо в адресной строке браузера — http://www.сайт:80. Веб-сервер обрабатывает полученный от нас запрос и выдает несколько пакетов, содержащих текст HTML, который отображает наш браузер. В результате мы видим на экране главную страницу

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).

Стек TCP / IP .

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

    платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

    открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

История создания TCP / IP .

В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

Модель OSI .

Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

Рассмотрим кратко функции каждого уровня.


Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

    Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

    Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

    Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

    Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

    Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

    Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

    Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP . В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

Документы RFC .

Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

    черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

    предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

    черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

    стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

    экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

    информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

    лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов.

Протокол IP (Internet Protocol ) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP 3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

Статьи по теме: