Пассивный корректор коэффициента мощности схема. Силовой дроссель и его расчет

1. ЗАЧЕМ ЭТО НАДО?

Сразу скажем, что вопреки поверхностным утверждениям наличие корректора коэффициента мощности само по себе не дает улучшения формальных характеристик устройства, в котором он применен. Наоборот, введение ККМ как достаточно сложного устройства пока приводит к заметному удорожанию и усложнению продукта в целом (конечно, по мере развития техники цена будет снижаться). Тем не менее, уже сейчас введение ККМ в усилители мощности дает ряд очень важных преимуществ, с лихвой окупающих это усложнение.

Первым и самым важным преимуществом является тот факт, что при использовании усилителей с ККМ с той же проводкой без нарушения каких-либо норм можно использовать как минимум втрое-вчетверо более мощные усилители. Кстати, никакого нарушения физических (и юридических) законов здесь нет, а почему так получается - расскажем дальше.

Второе, не менее важное, но редко упоминаемое преимущество состоит в том, что обеспечить высокую энергоемкость блока питания с ККМ намного легче, чем традиционного. Энергоемкость - это мера способности блока питания отдавать в течение некоторого времени мощность в нагрузку, не "просаживая" сеть и не сильно снижая выходное напряжение. С практической точки зрения недостаток энергоемкости приводит к тому, что выходная мощность усилителя на низких частотах (там, где она нужнее всего!) оказывается намного меньше, а искажения других сигналов при наличии низкочастотного - намного выше, чем при измерениях на частоте 1 кГц, результаты которых (иногда всего лишь желаемые) рекламируются в описании. Проще говоря, при недостатке энергоемкости усилитель начинает "захлебываться" и искажать сигнал во время громких низкочастотных звуков, например, при ударе бочки. К сожалению, для усилителей с традиционным блоком питания этот нежелательный эффект скорее правило, нежели исключение. Поэтому при необходимости обеспечения хорошего качества и приходилось выбирать усилитель с большим запасом по мощности.

Третье преимущество - блок питания с ККМ по принципу действия стабилизирует выходное напряжение. Поэтому выходная мощность усилителя перестает жестко зависеть от напряжения сети - даже при "просевшей" сети отдается полная мощность.

Еще одним, совсем неожиданным преимуществом является то, что сетевой фон (тот самый) при использовании только усилителей с ККМ, оказывается, как правило, децибел на 10 ниже.

2. ЧТО ЭТО ТАКОЕ И КАК ЭТО РАБОТАЕТ?

Несмотря на многообразие реально существующих устройств, принцип работы ККМ можно рассмотреть на следующем простом примере (см. рис. 1).

Корректор коэффициента мощности - это не что иное, как почти обычный импульсный регулятор, питающийся выпрямленным, но несглаженным сетевым напряжением и стабилизирующий напряжение на выходном накопительном конденсаторе C2. Основной принцип его действия довольно прост и состоит в следующем. Сначала на короткое время замыкается ключ S1, и в катушке индуктивности L1 в полном соответствии с учебником физики начинает нарастать ток. Спустя некоторое время ключ размыкается, а энергия, накопленная в катушке, через диод переходит в выходной накопительный конденсатор. Этот цикл непрерывно повторяется, в результате чего на накопительный конденсатор поступают порции энергии, величина которых зависит от входного напряжения, величины индуктивности и времени замкнутого состояния ключа. Для того чтобы размеры катушки и потери в ней были невелики, величину индуктивности выбирают небольшой, а, соответственно, частоту повторения таких циклов делают достаточно высокой - десятки и сотни тысяч раз в секунду. Необходимо заметить, что при чрезмерно высокой частоте потери на переключение транзистора, используемого в качестве ключа, становятся весьма

существенными. Самое важное здесь то, что при надлежащем управлении вход такого преобразователя со стороны сети будет выглядеть как некоторое сопротивление (ток в каждый момент времени пропорционален напряжению), и в то же время на выходном конденсаторе будет поддерживаться некоторое постоянное напряжение, практически не зависящее от нагрузки и напряжения сети (!). При этом между напряжением в сети и током, отбираемым от нее, не будет ни сдвига фаз (cos j 1)*, ни нарушения пропорциональности.

Высокое напряжение на накопительном конденсаторе облегчает задачу обеспечения энергоемкости блока питания, поскольку содержание энергии в конденсаторе пропорционально квадрату напряжения, тогда как размеры и вес у конденсаторов равной емкости примерно пропорциональны напряжению. В результате конденсатор емкостью 2200 мкФ при напряжении 430В содержит больше 200 Дж энергии, а такой же конденсатор при напряжении 60В - всего около 4 Дж, или в 50 (!) раз меньше. Объем же у этих конденсаторов, отличается всего раз в шесть-восемь. Поэтому для достижения одинаковой энергоемкости при низких напряжениях требуются конденсаторы огромной емкости - более 100000 мкф в данном случае. В то же время для безупречной работы образцового высококачественного усилителя энергоемкость его блока питания должна быть не ниже 0,5…0,8 Дж на Вт суммарной выходной мощности, для концертных усилителей (кроме сабвуферных) вполне приемлемо 0,2…0,4 Дж на Вт. То есть усилитель 2х1000 Вт должен иметь энергоемкость блока питания как минимум 400 Дж, или 200000 мкФ на 60В, а желательно раза в три больше.

На практике же энергоемкость традиционных блоков питания у подавляющего большинства усилителей гораздо ниже, и причиной тому не только банальная экономия производителей на трансформаторах и конденсаторах. Не менее существенно то обстоятельство, что выпрямитель с конденсаторами большой емкости представляет собой цепь, нагружающую сеть только в короткие промежутки времени (во время "верхушек" синусоид), зато большими токами (см. рис. 2), где, кстати, видно, что форма сетевого напряжения сильно искажена такими выпрямителями). Причем, чем лучше трансформатор и выше емкость, тем сильнее выражено это явление. Включать подобный блок питания в сеть можно только при наличии устройств "мягкого" пуска, иначе будут сгорать предохранители. Далее, любой, даже небольшой скачок напряжения сети в сторону повышения вызывает резкий рост величины этих импульсов тока, что приводит к выходу выпрямителей из строя. Именно поэтому емкость конденсаторов (и, соответственно, энергоемкость блоков питания) в большинстве усилителей с традиционным блоком питания выбрана много меньшей, чем это необходимо для обеспечения надлежащего запаса мощности на низких частотах.

Взглянув на рис. 3, можно заметить еще два обстоятельства.

Первое - это то, что пиковый потребляемый ток оказывается в несколько раз выше, чем средний. Но полезная мощность определяется средним током, тогда как падение напряжения на проводах - пиковым. А он оказывается много больше среднего.

Второе обстоятельство - ток, потребляемый короткими импульсами, имеет высокую скорость изменения, и, соответственно создает больше помех.

Еще одна проблема возникает в трехфазных сетях. Из-за того, что фазы напряжений в трехфазной сети сдвинуты на время, значительно большее, чем длительность этих импульсов тока, они в нулевом проводе перестают компенсироваться. Более того, ток в нулевом проводе окажется примерно равным сумме фазных токов, тогда как в нормальной ситуации ток через него вообще не

должен течь, и нулевой провод обычно делают более тонким, чем фазные. Если учесть, что ток через него становится больше, чем через фазные, а также то, что установка предохранителей в нулевой провод запрещена, нетрудно догадаться, что тут недалеко и до пожара. Поэтому величина гармоник тока потребления ограничена достаточно жесткими международными стандартами. Традиционные блоки питания при мощности выше 150...200 Вт удовлетворить этим стандартам принципиально не в состоянии. Это приведет к тому, что при больших мощностях традиционные блоки питания просто-напросто оказываются "вне закона".

Всех этих проблем можно избежать, если со стороны сети блок питания будет выглядеть как чисто активное сопротивление, подобно утюгу или лампочке накаливания.

Именно так и работает блок питания с корректором коэффициента мощности. Исчезают проблемы, связанные с нестабильностью сети, а также появляется возможность обеспечить необходимую энергоемкость блока питания.

Становится совершенно очевидным - применение корректора коэффициента мощности является не только обязательным (с точки зрения закона), но и совершенно необходимым для "честной" работы профессиональных высококачественных усилителей.

* Небольшое дополнение: cos j и коэффициент мощности часто путают, хотя это не одно и то же. Cos j - это мера того, какая доля тока, протекающего в проводах, фактически уходит в нагрузку (и выполняет полезную работу), при этом как напряжение, так и ток полагаются строго синусоидальными. Если сдвига фаз нет, cos j = 1. Если сдвиг фаз достигает 90 градусов независимо от знака, cos j обращается в нуль - полезная мощность просто не передается в нагрузку.

Коэффициент мощности совпадает с cos j только в случае чисто синусоидальных токов и напряжений. Если же ток или напряжение несинусоидальны, применимым остается только коэффициент мощности, который показывает какая доля тока, прошедшего по проводам и нагревающего их, с пользой ушла в нагрузку. Коэффициент мощности обычного выпрямителя не превышает 0,25…0,3, тогда как у хорошего ККМ он составляет не менее 0,92…0,95, т.е. в 3-4 раза больше (вот откуда трех-четырехкратная разница!).

На рынке персональных компьютеров становится все больше и больше блоков питания со встроенными корректорами мощности. Они выполнены с использованием различных интегральных микросхем, и поэтому имеют разные схемы построения, хотя общие принципы схемотехники (о которых рассказывалось в предыдущей публикации), практически, одинаковы. Поэтому, рассмотрев всего лишь одну микросхему, а именно, UCC3818, мы получим хорошее представление об архитектуре большинства контроллеров коррекции мощности.

Микросхема UCC3818 относится к семейству контроллеров коррекции мощности, к которому принадлежат еще и такие контроллеры, как UCC2817, UCC2818 и UCC3817. Различие между контроллерами этого семейства заключается в разных диапазонах рабочих температур и разных значениях напряжений UVLO (напряжения включения и напряжения выключения микросхемы). Микросхемы семейства являются ШИМ-контроллерами, выполняющими все функции, необходимые для активной коррекции коэффициента мощности. Контроллеры позволяют доводить значения коэффициент мощности почти до единицы путем формирования необходимой формы входного тока, в зависимости от параметров входного переменного напряжения. Контроллеры семейства работают в режиме среднего тока, в результате чего обеспечивается стабильность входного тока и малые искажения синусоидальности сетевого тока.

Контроллеры UCC x817/x818 имеют следующие основные особенности:

- обеспечивают управление повышающим преобразователем;

- ограничивают искажения, вносимые в питающую сеть;

- обеспечивают модуляцию передней кромки импульса тока;

- позволяют работать с любым переменным напряжением, использующимся в любых странах мира;

- обеспечивают защиту от превышения напряжения;

- обеспечивают ограничение потребляемой мощности на заданном уровне;

- работают в режиме среднего тока;

- обеспечивают улучшенное подавление шумов;

- имеют улучшенный алгоритм опережающего управления;

- имеют типовое значение пускового тока, равное 150 мкА;

- созданы с использованием маломощной технологии BiCMOS.

Контролеры семейства разработаны в компании Texas Instrument"s и обладают малым значением пускового тока и низким уровнем потребляемой мощности. В контроллерах используется технология модуляции передней кромки импульса тока, т.е. длительность рабочего цикла регулируется путем изменения времени начала заряда сглаживающего конденсатора (а не временем прекращения зарядного тока). Данная технология позволяет уменьшить величину пульсаций на сглаживающем конденсаторе, устанавливаемом на выходе корректора мощности, что, в итоге, приводит к уменьшению габаритов этого конденсатора, а, следовательно, и к снижению его стоимости и стоимости всей схемы.

Усилитель тока имеет малое входное смещение (2 мВ), что позволяет уменьшать искажения тока в условиях малой нагрузки.

Рис.1 Архитектура ШИМ-контроллера семейства UCC3818

Блок-схема ШИМ-контроллеров UCCx817/x818 представлена на рис.1. Предельные значения основных параметров микросхем представлены в табл.1.

Таблица 1. Предельные значения параметров UCC3818

Параметр

Обознач.

Значение

Питающее напряжение

18 V

Ток потребления

20 mA

Выходной управляющий ток (продолжительный)

I DRVOUT

0.2 A

Выходной управляющий ток

I DRVOUT

1.2 A

CAI , MOUT , SS

Входное напряжение на контакте PKLMT

Входное напряжение на контактах VSENSE , OVP / EN

10 V

Входной ток контактов RT , IAC , PKLMT

10 mA

Максимальное отрицательное напряжение на контактах DRVOUT , PKLMT , MOUT

V NEG

0.5 V

Рассеиваемая мощность

Температура пайки (10 сек)

T SOL

300° C

Контроллеры выпускаются в 16-контактных корпусах типа SOIC, PDIP, TSSOP. Распределение сигналов по контактам микросхемы представлено на рис.2, а в табл.2 дается описание этих сигналов.

Рис.2 Цоколевка микросхемы UCC3818

Таблица 2. Назначение контактов микросхемы UCC3818

Обознач.

Описание

«Земля». Относительного это контакта измеряются все напряжения. Контакты VCC и REF должны подключаться к «земле» через конденсаторы 0.1 мкФ , или через большие керамические конденсаторы.

PKLMT

Вход ограничения пикового тока корректора мощности. Порогом для токового ограничения является уровень . Для формирования смещения сигнала ограничения тока используется внешний резистивный делитель, подключенный с одной стороны к «отрицательному» выводу токового датчика, а с другой стороны, к источнику опорного напряжения VREF . Полученное таким образом смещение соответствует пиковому значению тока. Ограничение тока осуществляется в тот момент, когда напряжение контакта PKLMT становится ниже .

CAOUT

Выход усилителя тока. Это выход операционного усилителя с широкой полосой пропускания, который измеряет величину сетевого тока и формирует команды для широтно-импульсного модулятора корректора мощности. Это позволяет устанавливать необходимого значение рабочего цикла ШИМ. Компенсационные внешние элементы устанавливаются между выходом CAOUT и входом MOUT .

Неинвертирующий вход усилителя тока. Этот вход используется для контроля величины сетевого тока с помощью токового датчика, в качестве которого используется низкоомный резистор. Вход CAI соединен через резистор с той стороной токового датчика, которая подключена к «земле». Величина сетевого тока измеряется по разности потенциалов на контакте CAI и контакте MOUT (именно между двумя этими контактами и включается токовый датчик).

MOUT

Мультиплексированный контакт, являющийся выходом умножителя и одновременно инвертирующим входом усилителя тока. Такая конфигурация позволяет улучшить защиту от помех и позволяет работать в режиме модуляции переднего фронта. Совместно с контактом CAI используется для контроля величины сетевого тока.

Вход аналогового умножителя. На этом входе создается ток, пропорциональный мгновенному значению входного напряжения. Умножитель настроен таким образом, что позволяет отслеживать очень малые изменения входного тока. Рекомендуемое максимальное значение входного тока составляет 500 мкА .

VAOUT

Выход усилителя ошибки по напряжению. Этим операционным усилителем осуществляется регулировка выходного напряжения. Выход усилителя внутренне ограничивается на величине примерно 5.5 В .

Напряжение упреждающего управления. На этот контакт подается сигнал, пропорциональный среднедействующему ( RMS ) значению напряжения. При отсутствии питающей сети на контакте VFF должно устанавливаться напряжение 1.4В .

VREF

Выход опорного напряжения. На этом выходе формируется постоянное стабилизированное напряжение величиной 7.5В . Выходной ток этого контакта может достигать величины 20 мА, что необходимо для питания внешних периферийных цепей. В составе микросхемы имеется внутренняя цепь ограничения тока при коротких замыканиях. Выход VREF запрещен и установлен в , если питающее напряжение Vcc ниже порога UVLO . Между контактом VREF и «землей» должен устанавливаться шунтирующий керамический конденсатор емкостью около 0.1мкФ (или больше) для обеспечения стабильности опорного напряжения.

OVP / EN

Вход внутреннего компаратора, который запрещает работу выходного драйвера микросхемы в случае, если выходное напряжение превышает заданный уровень.

VSENSE

Инвертирующий вход усилителя ошибки по напряжению. Обычно этот вход соединен с компенсационной цепью и с выходом повышающего преобразователя (подключается через делитель).

Контакт для подключения частотозадающего резистора. Внешний резистор, включенный между этим выводом и «землей» задает величину тока для заряда конденсатора, подключенного к контакту CT . Номинал резистора рекомендуется выбирать в диапазоне 10…100 кОм . Номинальное напряжение на данном контакте равно .

Контакт для программирования «мягкого старта». К этому контакту подключается внешний конденсатор. Конденсатор разряжается, если питающее напряжение Vcc становится низким. Если работа «мягкого старта» разрешена, внешний конденсатор начинает заряжаться внутренним источником тока. Напряжение контакта SS используется как сигнал ошибки во время запуска микросхемы, разрешая регулировать ширину выходных импульсов. В случае, когда питающее напряжение Vcc падает, сигнал OVP / EN быстро опускается ниже 1.9В и внешний конденсатор SS быстро разряжается и запрещает функционирование ШИМ.

Контакт для подключения частотозадающего конденсатора. Конденсатор, задающий частоту ШИМ, включается между этим контактом и «землей». Этот конденсатор должен располагаться как можно ближе к «земле».

Положительное питающее напряжение. Для нормального функционирования, этот вход должен быть подключен к стабилизированному источнику, формирующему выходной ток величиной, как минимум, 20 мА и напряжение величиной 10…17 В . К контакту Vcc напрямую должен быть подключен шунтирующий конденсатор для поглощения импульсов тока, необходимых для заряда емкости затвора внешнего MOSFET -транзистора. Чтобы предотвратить формирование выходных импульсов неправильной формы на контакте DRVOUT , выходной драйвер контроллера должен быть заблокирован до тех пор, пока напряжение на контакте Vcc превышает верхний порог UVLO и находится ниже нижнего порога UVLO .

DRVOUT

Выходной сигнал, управляющий внешним силовым ключом, в качестве которого используется полевой транзистор, т.е.на выходе формируются сигналы управления затвором полевого транзистора. Выход представляет собой тотемный выход, построенный на MOSFET -транзисторах. Между выходом DRVOUT и затвором внешнего полевого транзистора должен устанавливаться последовательный токоограничивающий резистор, который обеспечивает согласование между выходным сопротивлением микросхемы и сопротивлением затвора. Резистор позволяет избежать перегрузки выхода DRVOUT .

Рассмотрим практический вариант применения микросхемы UCC3818 в составе блока питания HPC 360-302. В этом блоке питания используется активный высокочастотный корректор мощности, устанавливаемый сразу же после диодного моста (рис.3). Входом схемы корректора мощности являются точки, обозначенные BD+ («плюс» диодного моста) и BD- («минус» диодного моста). Таким образом, на вход корректора мощности подается напряжение величиной примерно 300В. Выходом корректора мощности является напряжение Vo величиной около 400В (относительно точки GND).

Рис.3 Положение корректора мощности в блоке питания HPC 360-302

Принципиальная схема корректора мощности блока питания HPC 360-302 представлена на рис.4.

Рис.4 Принципиальная схема корректора мощности блока питания HPC 360-302

Питающее напряжение Vcc для контроллера UCC3818 формируется интегральным стабилизатором на напряжение +12В типа 7812 (IC1). На вход этого стабилизатора подается постоянное нестабилизированное напряжение величиной 15...20 В. Это напряжение формируется дежурным преобразователем блока питания. Для его формирования задействована дополнительная обмотка импульсного трансформатора дежурного преобразователя (рис.5). Импульсы, генерируемые в этой обмотке, выпрямляются диодом D8 и сглаживаются конденсатором С10. Ограничение полученного напряжения осуществляется стабилитроном ZD1. Таким образом, контроллер UCC3818 запускается сразу же, как только блок питания включается в сеть, и начинает работать дежурный преобразователь.

Рис.5 Формирование питающего напряжения для UCC3818 в корректоре мощности блока питания HPC 360-302

Включение UCC3818 происходит в момент, когда напряжение Vcc на конт.15 превышает значение 10.2 В.

При включении контроллера на конт.9 появляется опорное напряжение VREF величиной 7.5В, на конт.14 (CT) появляется пилообразное напряжение внутреннего частотозадающего генератора, а на выходе – на конт.16 (DRVOUT) появляются прямоугольные импульсы. Выходные импульсы контроллера управляют внешним силовым ключом, который в данной схеме образован двумя параллельно включенными полевыми транзисторами QF1 и QF2. параллельное включение двух транзисторов позволяет увеличить мощность схемы.

Переключение транзисторов QF1 и QF2 приводит к созданию импульсного тока в дросселе L1. Этот дроссель является, пожалуй «главным» элементом всей схемы. Импульсы, наводимые в дросселе, имеют амплитуду, значительно превышающую 300В. Эти импульсы выпрямляются диодом D7, в результате чего создается напряжение постоянного тока величиной около 400В.

Функцию токового датчика в схеме выполняют два параллельно включенных резистора большой мощности R14/R14A. Падение напряжения на этих резисторах пропорционально току, потребляемому схемой из сети. Это падение напряжения оценивается контроллером через входные контакты CAI (конт.4) и MOUT (конт.5). Кроме того, превышение током предельного значения отслеживается через конт.2 (PKLMT). Чем больше величина потребляемого тока, тем меньше напряжение на конт.2.

Выходное напряжение корректора мощности обозначено на схеме Vo. Величина этого напряжения контролируется микросхемой UCC3813 через входы VSENSE (конт.11) и OVP/EN (конт.10). Выходное напряжение подается на эти контакты через резистивный делитель, в который входят резисторы R2/R3/R4/R5/R19. Компенсационная цепь усилителя ошибки по напряжения состоит из элементов C7/C15/R7 и включена между конт.11 (VSENSE) и конт.7 (VAOUT).

Длительность периода «мягкого старта», в течение которого длительность выходных импульсов контроллера плавно нарастает в момент его включения, задается конденсатором С4, подключенным к конт.13 (SS).

И снова здравствуйте!..
К сожалению статья моя задержалась, т.к. возник срочный проект по работе, а так же появились интересные трудности при реализации корректора коэффициента мощности (далее ККМ ). А вызваны они были следующим - мы в своем производстве для управления ККМ используем «заказную» микросхему, которую нам под наши задачи производит дружественная особенно в 1941-м Австрия и соответственно в продаже ее не встретить. Поэтому встала задача переделать данный модуль под доступную элементарную базу и мой выбор пал на микросхему ШИМ-контроллер - L6561 .
Почему именно она? Банальная доступность, вернее нашел ее в «Чип и Дип» , почитал даташит - понравилась. Заказал сразу 50 шт, т.к. дешевле и в своих любительских проектах у меня уже есть несколько задач для нее.

Теперь о главном: в данной стать я расскажу как почти с нуля вспоминал о проектирования однотактных преобразователей (казалось бы при чем тут они ), почему убил десяток ключей и как этого избежать вам. Данная часть расскажет теорию и что бывает если пренебрегать ей. Практическая же реализация выйдет в следующей части как я и обещал вместе с зарядным устройством , т.к. они по сути являются одним модулем и тестировать их надо вместе.
Забегая вперед скажу, что для следующей части уже заготовил пару десятков фотографий и видео, где мое ЗУ не надолго «переквалифицировалось» сначала в сварочный аппарат, а затем в блок питания для «козла» . Те, кто работают на производстве поймут что это за зверь и сколько он потребляет для нашего согревания)))

А теперь к нашим баранам…

Зачем он нам вообще нужен этот ККМ?

Главное бедой «классического» выпрямителя с накопительным конденсаторов (это та штука, которая превращает 220В переменного тока в +308В постоянного тока), который работает от синусоидального тока является то, что этот самый конденсатор заряжается (берет энергию из сети) только в моменты, когда напряжение приложенное к нему больше чем на нем самом.

На человечьем языке, слабонервным и с научными степенями не читать

Как нам известно электрический ток напрочь отказывается идти, если нету разности потенциалов. От знака же разности этой будет еще зависеть и направление протекания тока! Если вы психанули и решили попробовать напряжением 2В заряжать свою мобилу, где батарея Li-ion и рассчитана на 3.7В, то ничего у вас не выйдет. Т.к. ток будет отдавать тот источник, который имеет больший потенциал, а получать энергию будет тот у кого потенциал ниже.
Все как в жизни! Вы весите 60 кг, а парень на улице, который подошел попросить позвонить 120 кг - понятное дело, что пиздюлей раздаст он, а вы их получите. Так и тут - батарейка при своих 60 кг 2В не сможет дать ток в аккумулятор с 120 кг 3.7В. С конденсатором точно так же, если на нем +310В и вы приложите к нему +200В, то он ток получать откажется и заряжаться не будет.

Стоит так же заметить, что исходя из описанного выше «правила» время, отведенное конденсатору на зарядку будет очень маленьким. У нас же ток изменяется по синусоидальному закону, а значит необходимое напряжение будет лишь на пиках синусоиды! Но конденсатору то работать надо, поэтому он нервничает и пытается зарядиться. Он знает законы физики в отличии от некоторых и «понимает», что времени мало и поэтому начинает в эти самые моменты, когда напряжение в пике, потреблять просто огромный ток. Ведь его должно хватить на работу устройства до наступления следующего пика.

Немного об этих «пиках»:

Рисунок 1 - Пики в которых заряжается конденсатор

Как мы видим кусок периода в котором ЭДС принимает достаточное значение для заряда (образно 280-310В) составляет около 10% от полного периода в сети переменного тока. Получается, что мы вместо того, чтобы постоянно забирать плавно энергию из сети, вырываем ее лишь небольшими эпизодами, тем самым мы «перегружаем» сеть. При мощности в 1 кВт и индуктивной нагрузке, ток в момент таких «пиков» может спокойной достигать значений на 60-80А .

Поэтому наша задача сводится к обеспечению равномерного отбора энергии из сети, чтобы не перегружать сеть! Именно ККМ позволит нам реализовать данную задачу на практике.

Кто такой этот ваш ККМ?

Корректор мощности - это обычный повышающий преобразователь напряжения, чаще всего он однотактный. Т.к. мы используем ШИМ модуляцию, то в момент открытого ключа напряжение на конденсаторе постоянное. Если мы стабилизируем выходное напряжение, то ток забираемый из сети пропорционален входному напряжению, то есть изменяется плавно по синусоидальному закону без ранее описанных пиков потребления и скачков.

Схемотехника нашего ККМ

Тут я решил не изменять своим принципам и так же положился на даташит, выбранного мною контроллера - L6561 . Инженеры компании STMicroelectronics уже сделали все за меня, а если конкретнее, то он уже разработали идеальную схемотехнику для своего продукта.
Да я могу сам с нуля пересчитать все и потратить на это дело день-два, то есть все свои и так редкие выходные, но спрашивается зачем? Доказывать себе что могу, этот этап к счастью давно пройден)) Тут у меня вспоминается бородатый анекдот про площадь красных шариков, мол математик применяет формулу, а инженер достает таблицу с площадью красных шариков.... Так и в этом случае.

Советую сразу обратить внимание на то, что схема в даташите рассчитана на 120 Вт, а значит нам следует ее адаптировать под наши 3 кВт и запредельные напряжения работы.

Теперь немного документации к описанному выше:
Даташит на L6561

Если мы посмотри на страницу 6, то увидим несколько схем, нас интересует схема с подписью Wide-range Mains , что с басурманского значит «для работы в широком диапазоне напряжения питающей сети» . Именно данный «режим» я имел ввиду, говоря о запредельных напряжениях. Устройство считается универсальным, то есть может работать от любой стандартной сети (например, в штатах 110В) при диапазоне напряжений 85 - 265В.

Данное решение позволяет нам обеспечит нашему ИБП еще и функцию стабилизатора напряжения! Для многих такой диапазон покажется избыточным и тогда они могут выполнить данный модуль с учетом напряжения питания 220В +- 15%. Это считается нормой и 90% устройств в ценовой категории до 40 тыс. руб вообще лишены ККМ, а 10% используют его лишь с расчетом отклонений не более 15%. Это бесспорно позволяет несколько снизить себестоимость и габариты, но если вы еще не забыли, то мы делаем устройство, которое обязано потягаться с АРС!

Поэтому для себя я решил выбрать самый правильный вариант и сделать не убиваемый танк, который сможет вытянуть даже на даче, где 100В в сети сварочный аппарат или насос в скважине:


Рисунок 2 - Стандартное схемотехническое решение, предлагаемое ST

Адаптация стандартной схемотехники под наши задачи

а) Когда смотрю на данную схему из ДШ, первым что приходит в голову - необходимо добавить фильтр синфазных помех! И это правильно, т.к. на большой мощности они начнут «сводить с ума» электронику. Для токов 15 А и более он будет иметь более усложненный вид, чем многие привыкли его видеть в тех же компьютерных БП, где всего 500-600 Вт. Поэтому данная доработка будет отдельным пунктом.

Б) Мы видим конденсатор С1, можно взять хитрую формулу и посчитать необходимую емкость и я советую тем, кто хочет вникнуть это сделать, за одно вспомнив электротехнику 2 курса с любого политеха. Но я этим заниматься не буду, т.к. по собственным наблюдениям из старых расчетов помню, что до 10 кВт данная емкость растет почти линейно относительно роста мощности. То есть взяв в расчет 1 мкФ на 100 Вт, мы получим, что для 3000 Вт нам необходимо 30 мкФ. Данная емкость легко набирается из 7 пленочных конденсаторов по 4,7 мкФ и 400В каждый. Даже немного с запасом, ведь емкость конденсатора сильно зависит от приложенного напряжения.

В) Силовой транзистор нам понадобится серьезный, т.к. ток потребляемый от сети будет вычислять так:


Рисунок 3 - Расчет номинального тока для ККМ

Получили мы 41,83А . Теперь мы честно признаем, что удержать температуру кристалла транзистора в районе 20-25 о С мы не осилим. Вернее осилить можем, но будет дорого для такой мощности. После 750 кВт стоимость охлаждение фреоном или жидким кислородом размывается, но пока до этого далеко))) Поэтому нам надо найти транзистор, который сможет давать 45-50А при температуре 55-60 о С.

Учитывая, что в цепи есть индуктивность, то я предпочту IGBT транзистор, ибо наиболее живучие. Предельный ток надо надо выбирать для поиска сначала около 100А, т.к. это ток при 25 о С, с ростом температуры предельный коммутируемый ток транзистора снижается.

Немного о Cree FET

Получил я буквально 9 января посылку из Штатов от своего товарища с кучей разных транзисторов на тест, называется сие чудо - CREE FET . Не скажу, что это новая мега технология, на самом деле транзисторы на основе карбида кремния сделали еще в 80-х, просто до ума довели почему лишь сейчас. Я как изначальный материаловед и композитчик вообще к данной отрасли отношусь щепетильно, поэтому меня очень заинтересовал данный товар, тем более было заявлено 1200В при десятках и сотнях ампер. В России купить их не смог, поэтому обратился к своему бывшему одногруппнику и он любезно выслал мне кучу образцов и тестовую плату с forward"ом.
Могу сказать одно - это был мой самый дорогой фейерверк!
8 ключей ебнуло так, что я огорчился и на долго… На самом деле 1200В это теоретическая цифра для технологии, заявленные 65А оказались лишь импульсным током, хотя в документации было четко написано мол номинальный. Видимо был «номинальный импульсный ток» ну или как там еще китайцы придумывают. В общем то еще фуфло, но есть одно НО!
Когда я все таки сделал на CMF10120D корректор на 300 Вт, то оказалось, что он на одном и том же радиаторе и схеме имел температуру в 32 о С против 43-х у IGBT, а это очень существенно!
Вывод по CREE: технология сыровата, но она перспективна и ей определенно БЫТЬ.

В итоге полистав каталоги с посещенных мною выставок (удобная штука кстати аля параметрический поиск) я выбрал два ключа, ими стали - IRG7PH50 и IRGPS60B120 . Оба на 1200В, оба на 100+А, но открыв даташит первый ключ отсеялся сразу - он способен коммутировать ток 100А лишь на частоте в 1 кГц, для нашей задачи это губительно. Второй ключ на 120А и частоту в 40 кГц, что вполне подходит. Смотри даташит по ссылке ниже и ищем график с зависимостью тока от температуры:


Рисунок 4.1 - График с зависимостью максимального тока от частоты коммутации для IRG7PH50, оставим его на частотник


Рисунок 4.2 - График с рабочим током при заданной температуре для IRGPS60B120

Тут наблюдаем заветные цифры, которые показывают нам, что при 125 о С и транзистор и диод спокойно осилят токи чуть более 60А, при этом мы сможем реализовать преобразование на частоте в 25 кГц без каких либо проблем и ограничений.

Г) Диод D1, нам необходимо выбрать диод с рабочим напряжением не менее 600В и током номинальным для нашей нагрузки, то есть 45А. Я решил применить те диоды, которые у меня оказались под рукой (не давно закупил их для разработки сварочника под «косой мост») это - VS-60EPF12 . Как видно из маркировки он на 60А и 1200В. Ставлю я все с запасом, т.к. данный прототип делается для себя любимого и мне так спокойнее.
На самом деле вы можете поставить диод на 50-60А и 600В, но цена между версией на 600 и 1200В отсутствует.

Д) Конденсатор С5, тут все как в случае с С1 - достаточно увеличить номинал из даташита пропорционально мощности. Только стоит учесть, что если у вас планируется мощная индуктивная нагрузка или динамическая с быстрыми нарастаниями мощности (аля концертный усилок на 2 кВт), то лучше на этом пункте не экономить.
Я в своем вариант поставлю 10 электролитов по 330 мкФ и 450В , если вы планируете запитывать пару компьютеров, роутеры и прочую мелочь, то можно ограничиться 4-мя электролитами по 330 мкФ и 450В.

Е) R6 - он же токовый шунт, спасет нас от кривых рук и ошибок случайных, так же защищает схему от короткого замыкания и превышения нагрузки. Штука полезная однозначно, но если мы поступим как инженеры из ST, то на токах в 40А у нас получится обычный кипятильник. Тут есть 2 варианта: трансформатор тока или заводской шунт с падением 75мВ + ОУ аля LM358.
Первый вариант проще и дает гальваническую развязку данного узла схемы. Как рассчитывать трансформатор тока я приводил в предыдущей статье, важно помнить, что защита сработает, когда на ноге 4 напряжение вырастет до 2,5В (в реальности до 2,34В) .
Зная это напряжение и ток цепи, используя формулы из части 5 вы легко посчитаете трансформатор тока.

Ж) И последний пункт - это силовой дроссель. О нем чуть ниже.

Силовой дроссель и его расчет

Если кто-то внимательно читал мои статьи и у него отличная память, то он должен вспомнить статью 2 и фотографию № 5 , на ней видны 3 элемента моточных, которые мы используем. Еще раз покажу:

Рисунок 5 - Каркасы и сердечник для силовых моточных изделий

В данном модуле мы будем использовать опять таки наши любимые тороидальные кольца из распыленного железа, но только в этот раз не одно, а сразу 10! А как вы хотели? 3 кВт это вам не китайские поделки…

Исходные данные у нас есть:
1) Ток - 45А + 30-40% на амплитуду в дросселе, итого 58,5А
2) Напряжение на выходе 390-400В
3) напряжение на входе 85-265В AC
4) Сердечник - материал -52, D46
5) Зазор - распределенный


Рисунок 6 - И снова уважаемый Starichok51 экономит нам время и считает программкой CaclPFC

Я думаю расчет всем показал насколько это будет серьезная конструкция)) 4 кольца, да радиатор, диодный мост, да IGBT - ужас!
Правила намотки можно вычитать в статье «Часть 2». Вторичная обмотка на кольца мотается в количестве - 1 витка.

Итог по дросселю:

1) как вы видите количество колец аж 10 штук! Это накладно, каждое кольцо стоит около 140р, но что мы получим в замен в следующих пунктах
2) температура рабочая 60-70 о С - это совсем идеально, ведь многие закладывают рабочую температуру 125 о С. У себя на производстве 85 о С закладываем. Для чего это сделано - для спокойного сна, я спокойно уезжаю из дома на неделю и знаю, что у меня ничего не вспыхнет, не сгорит и все ледяное. Думаю цена за это в 1500р не такая смертельная, не так ли?
3) Плотность тока я поставил мизерную в 4 А/мм 2 , это повлияет и на тепло, и на изоляцию и соответственно на надежность.
4) Как видите по расчету емкость после дросселя рекомендована почти 3000 мкФ, так что мой выбор с 10 электролитами по 330 мкФ отлично сюда вписывается. Емкость конденсатора С1 получилась 15 мкФ, у нас двойной запас - можно уменьшить до 4-х пленочных кондеров, можно оставить 7 штук и это будет лучше.

Важно! Количество колец в основном дросселе можно уменьшить до 4-5, попутно увеличив плотность тока до 7-8 А/мм 2 . Это позволит неплохо сэкономить, но амплитуда тока вырастит несколько, а главное температура повысится не менее чем до 135 о С. Я считаю это хорошим решением для сварочного инвертора с ПВ 60%, но не для ИБП, который работает круглосуточно и наверняка в довольно ограниченном пространстве.

Что могу сказать - у нас растет монстр)))

Фильтр синфазных помех

Чтобы понять чем различаются схемы для данной фильтра на токи в 3А (упомянутый выше компьютерный БП) и на токи 20А, вы можете сравнить схемку из гугла на АТХ со следующей:


Рисунок 7 - Принципиальная схема фильтра синфазных помех

Несколько особенностей:

1) С29 - это конденсатор для фильтрации электромагнитных помех, имеет маркировку «Х1» . Его номинал должен быть в пределах 0,001 - 0,5 мФ.

2) Дроссель мотается на на сердечнике E42/21/20 .

3) Два дросселя на кольцах DR7 и DR9 мотаются на любом сердечнике из распыленки и диаметром более 20 мм. Я намотал на все тех же D46 из материала -52 до заполнения в 2 слоя. Шумов в сети даже при номинальной мощности практически нету, но это на самом деле даже в моем понимание избыточно.

4) Конденсаторы С28 и С31 по 0,047 мкФ и 1 кВ и их обязательно ставить класса «Y2».

По расчету индуктивности дросселей:

1) Индуктивность синфазного индуктора должна составлять 3,2-3,5 мГн

2) Индуктивность для дифференциальных дросселей рассчитывается по формуле:


Рисунок 8 - Расчет индуктивности дифференциальных дросселей без магнитной связи

Эпилог

Используя грамотные и профессиональные наработки инженеров компании ST, мне удалось с минимальными затратами изготовить если не идеальный, то просто отличный активный корректор коэффициента мощности с параметрами лучше чем у любого Шнайдера. Единственное вам обязательно стоит помнить насколько оно вам необходимо? И исходя из этого корректировать параметры под себя.

Моей целью в данной статье было как раз показать процесс расчета с возможностью корректирования исходных данных, чтобы каждый определившись с параметрами для своих задач уже сам посчитал и изготовил модуль. Надеюсь мне удалось показать это и в следующей статье я продемонстрирую совместную работу ККМ и зарядного устройства из части №5.

И.П. Сидоров Ю.А.

внимание. Высокое напряжение, опасно для жизни.

Внимание при реализации приведенной схемы корректора коэффициента мощности необходимо иметь опыт работы с опасными для жизни напряжениями и соблюдать предельную осторожность.

в схеме действует опасное для жизни напряжение 400 вольт

В случае допущения ошибок при сборке, напряжение в схеме может достигать 1000 и более вольт.

В момент включения и проверки собранной схемы необходимо пользоваться защитными очками.


Принципиальная электрическая схема (исправленная) корректора коэффициента мощности показана на рис. 1.


рис. 1. корректор коэффициента мощности - схема. открыть в большом размере
Предыдущая схема - открыть в большом размере


На схеме цветными блоками отмечены функциональные узлы:
  • Коричневый - фильтр помех;
  • Синий - модуль мягкого старта (soft-start);
  • Красный - внутренний источник питания;
  • Зеленый - корректор коэффициента мощности;
  • Голубой - модуль контроля рабочих параметров;
  • Желтый - модуль включения вентилятора принудительного охлаждения.

На исправленном варианте схемы отмечено (доступно и в большом размере):
красный прямоугольником - новые элементы схемы;
зеленым овалом - новые точки подключения конденсаторов C3 и С4.

Фильтр помех защищает питающую сеть от помех генерируемых при коммутации ключевых транзисторов. Также фильтр защищает схему от помех питающей сети и всплесков напряжения в сети.

Модуль мягкого старта ограничивает потребления тока из питающеё сети в момент первичной зарядки выходных электролитических конденсаторов. Этот модуль генерирует инвертированный сигнал KKM_SUCCESS. При появление сигнала (так как сигнал инвертированный - момент при котором напряжение упадет ниже 1В) можно включить нагрузку подключенную к выходу корректора коэффициента мощности. В случае игнорирования этого сигнала некоторые элементы схемы могут выйти из строя.

Внутренний источник питания генерирует постоянное напряжение 15В (допустимы отклонения +/-2В). Это напряжение используется для питания внутренних схем ККМ.

Корректор коэффициента мощности - основная часть схемы. ККМ выполнен на контроллере ir1155s, рабочая частота в данной схеме 160кГц (допустимы отклонения +/-5кГц). Для усиления токов управления коммутирующих транзисторов используется одноканальный драйвер tc4420, драйвер обеспечивает силу тока управляющих сигналов до 6А.

Модуль контроля рабочих параметров контролирует уровень пониженного питающего напряжения; рабочую температуру ККМ, момент достижения номинального напряжения на выходе ККМ

Модуль включения вентилятора принудительного охлаждения выполняет включение вентиляторов при появлении соответствующего сигнала.


Таблицы номиналов элементов схемы ККМ .

При сборке корректора коэффициента мощности необходимо использовать только оригинальные комплектующие. В случае использования неоригинальных комплектующих (контрафактных, поддельных и прочее), ККМ работать не будет или будет работать не верно и пр.

Этап 1. необходимо выполнить монтаж всех элементов за исключением:
R3 - варистор;
L3 - дроссель ККМ
C25.2-C25.4 - выходные электролитические конденсаторы, установить только один.

Монтажная плата спроектирована с учетом установки в корпус из радиаторного профиля. В этом случае стенки корпуса для элементов D1, D9, Q5, Q6 выполняют роль теплоотвода, а отведение тепла от дросселя L3 будет затруднено. Температура дросселя, в этом случае, служит индикатором нагрева всего устройства и поэтому терморезистор R40 устанавливается под дросселем.

В случае использования корпуса конструкции в которой роль теплоотвода для элементов D1, D9, Q5, Q6 будет использоваться радиатор - терморезистор R40 необходимо установить на поверхность радиатора. Необходимо обеспечить электроизоляцию корпуса радиатора и терморезистора.

Затем монтажную плату необходимо очистить от остатков флюса и других загрязнений.

Монтажная плата после этого этапа сборки будет выглядеть следующим образом


рис. 2. Верхняя часть монтажной платы ККМ.

На этой монтажной плате терморезистор и отводящий провод помещены в термоусадочную изоляцию. Так как терморезистор будет прикреплен к радиатору механическим способом, для повышения прочности электроизоляции он помещен в дополнительную термоусадочную изоляцию.


рис. 3. Нижняя часть монтажной платы ККМ.

К плате ККМ нужно подключить вентилятор 12В ток не более 0,2А.


ВНИМАНИЕ!!! В устройстве действует опасное для жизни напряжение 400 вольт.


Плату ККМ необходимо подключить к регулируемому источнику переменного напряжения 220В 50 Гц с ограничением силы тока 0,05 А.

После подачи питания, светодиод D8 должен светиться, напряжение на стабилитроне D5 должно быть в пределах 14-17 вольт. В случае отсутствия напряжения, необходимо проверить напряжение на конденсаторе С12 оно должно быть около 310 вольт. Если напряжение присутствует это означает неработоспособность дежурного источника питания. Частой причиной его неработоспособности является неверная сборка импульсного трансформатора T1.

Напряжение на выводе 4 микросхемы U1 (ir1155s) должно быть около 3,62 В, напряжение на выводе 6 около 3,75 В.

С помощью осциллографа необходимо проверить работу модуля ККМ. Для этого щуп осциллографа нужно подключить к выводу 6 или 7 микросхемы U3 (tc4420). Импульсы на выводе должны соответствовать следующему изображению.


рис. 4. График сигналов на выходе микросхемы драйвера tc4420.

Частота импульсов должна быть 160кГц (+/- 5кГц). Частота импульсов задается конденсатором С10. Увеличение емкости приводит к уменьшению частоты.

Амплитуда сигналов на выводах SG силовых транзисторов будет немного ниже, чем на выводе их драйвера (рис. 5).


рис. 5. График сигналов на выходах SG силовых транзисторов.

При этом график сигнала на резисторах Rg (R17, R18) будет следующим (рис. 6).


рис. 6. График сигнала на резисторах Rg (R17, R18).

Далее, контролируя сигналы на выводе драйвера, необходимо плавно уменьшать напряжение. При входном напряжении 150-155 вольт, генерация импульсов должна прекратиться. После прекращения генерации импульсов, входное напряжение необходимо плавно увеличивать, при входном напряжении 160-165 вольт, генерация импульсов должна возобновиться.

Продолжая плавно увеличивать напряжение, при достижении 270-280 вольт (АС) должны сработать реле (определить можно по их характерному звуку). Напряжение сигнала KKM_SUCCESS должно быть не более 1 вольта. Затем напряжение необходимо плавно уменьшать, при снижении напряжения до 250-260 вольт, реле должны выключиться, сигнал на выходе KKM_SUCCESS должен быть более 5 вольт.

Используя термофен, необходимо нагреть терморезистор, при достижении температуры 45-50 С° должен включиться вентилятор, при достижении температуры 75-85 С° генерация импульсов должна прекратиться. Во время остывания терморезистора последовательно должны возобновиться генерация импульсов и выключиться вентилятор.

Отключите питание.


ВНИМАНИЕ!!! после отключения питания в схеме некоторое время (несколько минут) будет сохраняться опасное для жизни напряжение.


Этап 3. Необходимо установить оставшиеся элементы схемы: R3, L3, C25.2-C25.4 и теплотвод для элементов D1, D9, Q5, Q6. На теплоотвод необходимо установить терморезистор обеспечив низкое тепловое сопротивление между ними. Также необходимо обеспечить низкое тепловое сопротивление между D1, D9, Q5, Q6 и радиатором. В случае затрудненной передачи тепла к радиатору эти элементы выйдут из строя.

Качество установки радиатора, с точки зрения теплоотведения, удобно проконтролировать с помощью тепловизора.

Теплоотвод нужно соединить с шиной Earth (на монтажной плате рядом с Y конденсаторами имеются необходимые для этого монтажные отверстия).

Крайне важно проверить электроизоляцию между шинами Earth и N или L (шины N-L используются для подачи электропитания). Напряжение пробоя электроизоляции должно быть не менее 1000 Вольт. Проверять напряжение пробоя изоляции свыше 1000 Вольт не следут. Эту процедуру можно выполнить с помощью специального прибора - тестера электроизоляции.

ВНИМАНИЕ!!!. В случае нарушения проверяемой электроизояции, при проверке некоторые элементы схемы могут выйти из строя.


Пример сборки корректора коэффициента мощности показан на следующих изображениях.



Этап 4. Подключите ККМ к питающий сети ограничив потребляемую силу тока 10А. После включения напряжение на выходе ККМ должно быть около 385-400 В. Также должен быть слышен звук включения реле. Подключите к выходу ККМ резистивную нагрузку 300 Ом. Напряжение на выходе ККМ должно остаться в техже пределах. PF должен быть не ниже 0,7.

Подключите ККМ к питающей сети без ограничителя тока. Увеличивая нагрузку до 2000 ватт PF должен также возрастать до значения не ниже 0,95. График PF в зависимости от нагрузки показан на рис. 7.


рис. 7. График зависимости PF от нагрузки.

Если значение PF не увеличивается до значения 0,95 при увеличении нагрузки это свидетельствует о некорректной работе ККМ. Вероятными причинами такой некорректной могут быть: резистивный датчик тока, дроссель, ошибки при изготовлении монтажной платы, контрафактные элементы D9, Q5, Q6, С18.1, C18.2, внутренний источник питания недостаточной мощности.


Осциллограммы потребляемых токов и выходных пульсаций.

В ходе нагрузочных тестов был определен КПД (рис. 8). Если принять во внимание погрешность измерительных приборов, вероятно, реальный КПД будет на 1-2% ниже. КПД был измерен при подключении ККМ к питающей сети с помощью двух дополнительных фильтров синфазных помех.


рис. 8. КПД корректора коэффициента мощности.

Данные для обоих графиков были получены при напряжениях питающей сети 200 и 240 вольт.

Этап 5. После всех проверок, разрядный резистор R23 можно удалить. Сборку и проверку ККМ на этом этапе можно считать завершенной.

Вопросы и предложения пишите на адрес электронной почты с пометкой ККМ или PFC.

Содержимое корзины

Рассмотрены вопросы создания пассивных корректоров коэффициента мощности для модулей питания, работающих от однофазных и трехфазных сетей. Пассивные корректоры мощности, использующие только дроссели и конденсаторы просты, надежны и не генерируют радиопомех. Для таких корректоров мощности приведены технические решения и основные соотношения для проектирования.

Сетевые источники вторичного электропитания (ИВЭП) с бестрансформаторным входом (БТВ), благодаря высоким энергетическим и массо-габаритным характеристикам, за последние 20 лет практически вытеснили традиционные. В то же время возникли две серьезные проблемы, связанные с применением таких ИВЭП. Первая связана с тем, что теперь в состав радиоэлектронной аппаратуры (РЭА) входит новый мощный генератор радиопомех, который заметно ухудшил электромагнитную обстановку. Чтобы уменьшить помехи в блоках питания на основе ИВЭП с БТВ, используются фильтры радиопомех (ФРП), как во входных, так и в выходных цепях, которые занимают до 10% объема блока .

Еще одна проблема таких ИВЭП связана с импульсным потреблением тока. В ИВЭП с БТВ входной выпрямитель с емкостным фильтром потребляет от сети импульсный ток длительностью всего 0,25-0,3 полупериода при соответствующем увеличении его амплитуды. Несинусоидальный характер потребляемого тока вызывает искажения формы кривой напряжения питающей сети, причем наиболее остро это проявляется в сетях ограниченной мощности, к которым относятся системы электроснабжения (СЭС) автономных объектов. Известно, что такие СЭС строятся на основе встроенных электроагрегатов, прицепных электростанций, электроустановок с отбором мощности, значение которой выбирается соизмеримым с мощностью, потребляемой РЭА.

С искажениями формы кривой напряжения первичных источников ограниченной мощности разработчики РЭА сталкивались и раньше, при применении трансформаторных выпрямительных устройств. Обычным требованием было использование выпрямительных нагрузок, которые составляли не более 20-30% от мощности первичных источников. Внедрение ИВЭП с БТВ резко обострило эту проблему.

Искажения формы кривой напряжения питающей сети не только нарушают функционирование других потребителей, подключаемых параллельно с ИВЭП с БТВ к ЭА, но и нарушают работу самого источника. Форма напряжения на выходе ЭА при работе на ИВЭП с БТВ соизмеримой мощности становится трапецеидальной. Регулятор ЭА старается поддержать среднее значение этого напряжения на уровне среднего значения напряжения синусоидальной формы. В результате значительно возрастают токи намагничивания сетевых трансформаторов в сервисных источниках ИВЭП с БТВ, которые перегреваются и выходят из строя.

При импульсном потреблении тока также резко возрастает мощность искажений. Коэффициент мощности ИВЭП с БТВ не превышает значения 0,7. На стационарных объектах, где применяются десятки ПК с такими ИВЭП, из-за дополнительной мощности искажений приходится увеличивать мощность силового ввода. Например, для питания десяти автоматизированных рабочих мест с персональными компьютерами требуется мощность порядка 3 кВт. При этом от сети будет одновременно потребляться активная мощность 3 кВт и мощность искажения 1,5 кВА, которая по последствиям равна реактивной мощности. При этом должен быть установлен силовой ввод, рассчитанный на мощность 3,35 кВА. В США именно эта мощность учитывается при оплате электроэнергии автономного объекта.

Имеется еще одна причина, из-за которой потребляемый ток в стационарных объектах должен быть синусоидальным. В большинстве зданий проложен нейтральный провод меньшего сечения, чем фазный. При нагрузках с низким коэффициентом мощности нейтральный провод, в котором высшие гармоники суммируются, перегружается и сгорает.

По перечисленным причинам Международная электротехническая комиссия (МЭК) с 1992 года ввела стандарт 552-2, требующий обязательной коррекции коэффициента мощности (æ) для потребителей мощностью более 200 Вт.

Чтобы обеспечить синусоидальную форму потребляемого тока, на входе ИВЭП с БТВ устанавливают активные или пассивные корректоры коэффициента æ. Активные корректоры, построенные на основе транзисторных высокочастотных преобразователей, позволяют получить высокий коэффициент мощности (более 0,98) и имеют КПД от 96 до 98%. Но сложность активных корректоров снижает надежность и увеличивает стоимость ИВЭП в целом. Возрастают и радиопомехи. Поэтому необходимо исследовать пассивные корректоры, которые просты и надежны, так как состоят из одного дросселя и нескольких конденсаторов, а также привлекательны благодаря их низкой цене.

На рис. 1 показан корректор , в котором элементы были оптимизированы на математической модели с целью получения максимального коэффициента мощности.


Рис. 1.
Принципиальная схема корректора коэффициента мощности

По результатам оптимизации для расчета L и C могут быть рекомендованы следующие выражения:

где С = С 1 +С 2 , мкФ.

Расчеты элементов корректора по соотношениям (1, 2) позволяют получить максимальный коэффициент æ, равный 0,98.

Контур LC настроен на третью гармонику 150 Гц с небольшой расстройкой (≈10%) с целью лучшей фильтрации высших гармоник.

Расчетный параметр L×I 2 использован для определения объема стали Э330 сердечника V дросселя L . Данные расчета LC -корректоров на мощность 400, 800, 1200 Вт сведены в таблицу 1.

Таблица 1. Данные расчета LC-корректоров на мощность 400, 800, 1200 Вт

Pном XL L С I L×I 2 Vст С3
Вт Ом Ом мГн мкФ А ВА см 2 мкФ
400 234 28,08 88,4 12,7 2,2 0,428 82 200
800 117 14,04 44,2 25,5 4,4 0,86 196 400
1200 78 9,36 30 37,5 6,6 1,3 300 600

В результате математического моделирования получены значения выходного напряжения моста U 0 для номинальной мощности Р ном и для 0,1×Р ном и определена форма входного тока (рис. 2). Все корректоры обеспечивают коэффициент мощности >0,98.

Рис. 2.

а) Входной ток

б) напряжение на выходе корректора мощности Рном

в) напряжение на выходе корректора мощности 0,1×Рном

Для дросселя L необходимо применять ленточные сердечники с зазором, так как ток основной гармоники является подмагничивающим для дросселя, фильтрующего третью гармонику, или торы с порошкообразными сердечниками. При создании опытного образца для дросселя использованы замкнутые магнитопроводы из многослойного железа фирмы EPCOS, у которых магнитная проницаемость постоянна в широком диапазоне изменений напряженности магнитного поля, а также перспективные конденсаторы MRP.

Правильное построение корректора предполагает компромисс между массой, которая определяется дросселем, и стоимостью, определяемой величиной С . Уменьшение величины L в контуре на третью гармонику вызывает ухудшение коэффициента æ и рост стоимости корректора, хотя вес корректора снижается. В качестве примера в таблице 2 приведены расчетные значения коэффициента мощности для различных значений индуктивности дросселя при выходной мощности корректора 1200 Вт.

Таблица 2. Расчетные значения коэффициента мощности

Индуктивность L, мГн

30 15 10

Емкость C, мкФ

37,5 75 112

Коэффициент мощности æ, %

98,8 95,38 89,64

Коэффициент гармоник Кг

15,5 31,2 49,5

Судя по рис. 2в, при мощности 0,1×Р ном напряжение на выходе корректора достигает значения 530 В. Чтобы исключить это перенапряжение, предлагается при малых мощностях отключать конденсаторы С1 и С2 от контура. Устройство , реализующее этот принцип, содержит дроссель фильтра третьей гармоники L1, диодный мост М1, конденсаторы фильтра С1, С2, оптосиммистор V1, сервисный источник питания (СИП), первый операционный усилитель ОУ1, источник опорного напряжения, включающий в себя сопротивление R1, стабилитрон V2, гистерезисное сопротивление R2, второй операционный усилитель ОУ2, сопротивления делителя R3, R4 (рис. 3).



Рис. 3. Корректор с защитой от перенапряжения

Устройство работает следующим образом. При номинальной мощности и при ее уменьшении до 30% напряжение на нагрузке не превышает расчетных значений. На входе источника подключен фильтр третьей гармоники, состоящий из дросселя L1, конденсаторов С1 и С2, которые соединены с нейтралью через включенный оптосиммистор V1.

При уменьшении мощности нагрузки ниже 30% от номинального значения напряжение на выходе моста М становится выше расчетного значения, а напряжение, поступающее со средней точки делителя R3, R4 на инверсный вход операционного усилителя ОУ2, выше, чем опорное напряжение на неинверсном входе операционного усилителя ОУ1, становится выше опорного напряжения на неинверсном входе, а его выходное напряжение близко к нулю. Ток через светодиод прекращается, выключается оптосиммистор V1 и отключает от дросселя конденсаторы С1 и С2.

Напряжение на выходе моста снижается, однако наличие гистерезисного сопротивления R2 в операционном усилителе ОУ2 препятствует его новому переключению. Отключение конденсаторов оправдано, так как при малых нагрузках требования к синусоидальности входного тока сетевых источников питания снижаются, и часто достаточно одного дросселя в фазном проводе, чтобы получить приемлемую форму входного тока.

При увеличении тока нагрузки растет падение напряжения на дросселе L1, напряжение на выходе моста еще более снижается. В результате вновь переключаются операционные усилители ОУ1, ОУ2, включается оптосиммистор V1, резонансные конденсаторы С1, С2 подсоединяются к дросселю L1, и входной ток становится близким к синусоидальному за счет фильтрации третьей гармоники.

Рассмотренные пассивные корректоры устанавливаются по требованию заказчика в блоки питания и источники бесперебойного питания ООО «АЭИЭП» (рис. 4).


Рис. 4.

а) Блок питания DG800

б) блок питания VZ1200

в) источник бесперебойного питания ИБП600

Таблица 3. Параметры блоков питания с корректорами.


Пассивные корректоры практически не уступают по габаритам и КПД активным, хотя в несколько раз тяжелее. Но следует учесть, что пассивные корректоры, в отличие от активных, не увеличивают уровни радиопомех, а, наоборот, подавляют их за счет корректирующего дросселя L1. Это позволяет использовать ИВЭП с БТВ и пассивными корректорами в медицине, технике, связи, измерительной и другой аппаратуре, где требуются низкие уровни помех.

Похожую проблему приходится решать и при создании трехфазных ИВЭП с БТВ; хотя получить фазный ток, по форме близкий к синусоиде, в таких ИВЭП значительно проще. Известно, что в трехфазных ИВЭП в спектре входного тока отсутствуют гармоники, кратные трем, при этом коэффициент æ традиционного выпрямителя на основе трансформатора и трехфазного моста с LC -фильтром достигает 0,96. Но если на выходе моста оставить только емкость С1 (рис. 5), а такой конденсатор небольшой емкости необходим для работы большинства высокочастотных преобразователей, то коэффициент æ снижается до значения 0,7 , а форма фазного тока сильно искажается.


Рис. 5. Трехфазный мост с фильтром С и LC

Но стоит поставить между трехфазным мостом и конденсатором С1 небольшую индуктивность L1, как коэффициент æ значительно повышается, что объясняется высокой эффективностью подавления 5 из 7 гармоник индуктивностью L1, реактивное сопротивление которой хL 1 = ω×L 1 растет с увеличением частоты. На рис. 6 представлена зависимость коэффициента мощности фазного тока от значения х*, где х* — нормированная величина реактивного сопротивления индуктивности L1:

где U 0 , I 0 — напряжение и ток на выходе моста.


Рис. 6. Зависимость коэффициента мощности фазного тока от значения x*

Судя по рис. 6, если значение х* близко к 0, то коэффициент мощности не превышает 0,7, а форма фазного тока сильно искажена (рис. 7а).



Рис. 7. Форма кривой фазной тока для трехфазного моста, работающего на емкость, с индуктивностью L1:

а) при х* = 0,025%

б) при х* = 2,25%, æ = 0,945

в) при х* = 2,25% для трехфазного традиционного ИВЭП с LС фильтром, æ = 0,945

На рис. 7 значения фазного тока iA нормированы относительно тока I 0 (i A * = i A /I 0 ).

Анализ показывает, что достаточно увеличить величину х* до 2,25%, как коэффициент æ повышается до значения 0,95. На рис. 7б показана форма фазного тока ИВЭП с БТВ, значение корректирующей индуктивности L1 которого посчитано по формуле:

Даже при такой незначительной индуктивности кривые фазного тока и коэффициентов æ ИВЭП с БТВ и традиционного трансформаторного ИВЭП с громоздким LC -фильтром (рис. 7в) практически не отличаются. Конструктивные расчеты показывают, что объем дросселя, индуктивность которого рассчитана по формуле (3), не превышает 3-5% от объема трехфазного ИВЭП с БТВ. Пассивные корректоры установлены в большинстве зарубежных трехфазных ИВЭП с БТВ, мощностью сотни Вт - единицы кВт. На рис. 8 показан такой дроссель, который применила в трехфазном ИВЭП с БТВ мощностью 900 Вт фирма Mean Well.


Рис. 8. Внутреннее устройство в ИВЭП с БТВ мощностью 1 кВт (стрелкой показан дроссель L1)

Корректирующие дроссели устанавливаются в модулях КД 1200М, на базе которых выпускается блок питания «Береза М» (рис. 9) мощностью 2000 Вт, рассчитанный на трехфазную сеть 380 В без нулевого провода.


Рис. 9. Блок питания BR2000 («Береза М»)

Если предыдущий блок «Береза» подключался к трехфазной сети по цепи фаза-ноль и для получения синусоидального входного тока на входе каждого модуля устанавливался корректор массой ≈3,5 кг, то в блоке «Береза М» реализованы преимущества трехфазного подключения, и для получения такого же коэффициента æ на входе модуля необходим всего один дроссель с массой 0,8 кг.

Литература

  • Твердов И. и др. Модернизация сетевых фильтров радиопомех на предприятии «АЭИЭП» Электронные компоненты. 2005. № 8.
  • Redl R. Power-factor correction in bridge rectifier circuts with inductor and capacitor. APEC, 1995.
  • Твердов И. и др. Устройство коррекции коэффициента мощности. Патент РФ № 2328067, 2007.
  • Каталог продукции ООО «Александер Электрик источники электропитания» на диске, 2008, осень.
  • RayW. Effect от supply reactance on power factor. APEC, 1998.
Статьи по теме: